What is SOILS FOR
EUROPE (SOLO)?

The goal of the Soils for Europe (SOLO) project is
the identification of Knowledge Gaps related to
increasing overall soil health across the EU. This
includes the suggestion of actions related to
Research and Innovation to fill these gaps, and
also methods of evaluation and Key Performance
Indicators to measure the impact of Research &
Innovation. SOLO, a five-year project within the
Soil Mission, features an iterative component,
the Think Tank roadmap documents, which are
built using a transdisciplinary and multi-actor
approach that includes the co-creation and de-
velopment of participatory methodologies to
identify Knowledge Gaps, and their associated
Bottlenecks and Actions. Each Think Tank aligns
with of the Soil Mission objectives. A key element
of SOLO is the active involvement of diverse
stakeholders who collaborate and promote the
exchange of knowledge throughout the project.

SOLO is designed in two conceptual direc-
tions: the “horizontal integration” of Research &
Innovation priorities across the Soil Mission ob-
jectives, and a second related to the “vertical in-
tegration” of these same priorities across scales,
from regions to the European level (Figure 1).
While SOLO aims to develop knowledge-based

Research & Innovation roadmaps for each Mission
Soil objective, conflicting or competing priorities
between these objectives may arise. Therefore,
activities that traverse the project’s roadmaps and
the EU regions were established to allow SOLO to
deliver a comprehensive synthesis of these pri-
orities and identify these emerging patterns for
both potential conflicts and synergies between
Mission Soil objectives and their Research & Inno-
vation priorities. This “horizontal integration” also
allows for an increase in the interdisciplinarity of
the roadmaps by engaging experts from different
Think Tanks to exchange views and expertise.
While the intent of this process is to develop a co-
hesive European-level roadmap for each Mission
Soil objective, different regions in Europe will dif-
fer in their needs and priorities for research fund-
ing. To address this, SOLO will regionalize these
roadmaps and highlight the different Research
and Innovation needs to fill knowledge gaps to
improve soil health across Europe. Activities of
the vertical integration are Soil Week events that
are organized in the member states of the 12
SOLO partners, and Regional Nodes that focus on
specific regions and land uses in Sweden, Portu-
gal, The Netherlands, and Hungary.
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Figure 1. SOLO is conceptualized both horizontally, through development of Knowledge Gaps at the stakeholder level,
though to a comprehensive synthesis, and vertically, by evaluating tradeoffs and priorities for different stakeholder groups,
regions of the EU, and the EU as a whole. Sectorial (thematic) topics are based on the Soil Mission objectives and are on

what roadmaps are based.

To facilitate roadmap creation and region-
alisation, we identified the main drivers of soil
health that serve as the knowledge base for
discussions of the Think Tanks and the Region-
al Nodes, and we developed and participated
in integration activities across Horizon projects
(particularly the ones related to road-mapping
activities). We also developed a shortlist of Key
Performance Indicators that allow the Soil Mis-
sion to evaluate the efficacy and impact of re-
sultant Research & Innovation activities and
funding. Finally, we developed and implemented
a communication and dissemination plan that in-
cludes a publishing platform that allows our out-
puts to undergo open review and be discussed
by interested parties before publishing.

The organisation of SOLO

Nine Think Tanks comprise the expert Soils
Network of Knowledge to address Research &
Innovation priorities for the eight Soil Mission
Objectives and the Nature Conservation of Soil
Biodiversity:

+ Reduce land degradation and desertification
« Conserve soil organic carbon stocks

+ Stop soil sealing and increase re-use of urban
soils

+ Reduce soil pollution and enhance restoration

+ Prevent soil erosion

+ Improve soil structure to enhance soil biodi-
versity

« Reduce the EU global footprint on soils

+ Improve soils literacy in society

+ Nature conservation of soil biodiversity

The Think Tanks comprise groups of key
stakeholders from diverse fields, expertise, and
knowledge streams (Figure 2). These include a
wide range of stakeholders from academia, pub-
lic and private sectors, civil society, environmen-
tal organisations, and others.

Under a transdisciplinary approach, Think
Tank leaders, along with key stakeholders have
co-developed actionable roadmaps for soil Re-
search & Innovation activities in the EU. Along
with Knowledge Gaps, these roadmaps propose
new research and research application avenues
to constrain future challenges in maintaining and
improving soil health. Roadmaps produced by
each Think Tank are submitted for an open review
process during which both invited and self-se-
lected reviewers comment on content related to
currently identified knowledge gaps, barriers, and
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actions to improve soil health. The Soil Network
of Knowledge is essential for this annual review.
SOLO aims to develop a Soil Network of
Knowledge. This is conceptualised as a wide
network of stakeholders, including the partic-
ipation of soil scientists, soil ecologists, social
scientists and economists, anthropologists and
psychologists, climate researchers, governance
specialists, policy and lawmakers, NGOs, cor-
porations, food quality and safety organisations,
space agencies and Earth observation research-
ers, institutions related to impact assessment,
restoration and remediation, consumer organisa-
tions, and educators. The Soil Network of Know!-
edge not only entails the co-creation procedures
undertaken by the project’s Think Tanks, but it
also seeks to nurture collaboration among Think
Tanks and other EU initiatives and projects. In
other words, it aims at creating a community that
expands beyond the project’s immediate scope.

General methodology

Once launched, Think Tanks began to follow the
steps of the engagement process. In this regard,

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

a screening procedure was conducted, in which
the Think Tank leaders identified key stakehold-
ers taking into consideration their area of exper-
tise and experience in relation to the specific Soil
Mission Objective targeted by the Think Tank. An
invitation was extended to potential stakehold-
ers explaining the functioning of the Think Tanks
and the project. Having initiated the Think Tanks,
various participatory dynamics were implement-
ed to co-define the Think Tank objectives, scope
and limitations as well as the governance model.
Incorporating stakeholders’ input concerning all
activities and incorporating feedback are actions
undertaken in this procedure (Figure 3).

As mentioned before, SOLO is conceptu-
alised as an iterative process (Figure 4). There-
fore, actions and efforts carried out during the
first year will take place annually, each year
nourished by the knowledge generated during
the previous one and, in its turn, nourishing the
next. The roadmaps (which include the Knowl-
edge Gaps presented in the different chapters
of the “Outlook for Soil Health 2025") are further
developed in annual in-person cross-fertilisation
events. There, key stakeholders deliberate to re-
fine the content of the roadmaps by addressing
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knowledge gaps, proposed actions, and bot-
tlenecks, and by setting priorities accordingly.
These stakeholder events are essential to cre-
ating a collaborative space and engaging stake-

holders in the process. All the inputs from these
events, and additional online interactions, are
integrated into the next iteration that will be in
open review every year.
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Prioritisation methodology

For SOLO’s main aim, delivering SMO, having the
insight of all diverse expertise, knowledge and
background involved in the decision-making
process is key. Therefore, the importance of pri-
oritisation together with the iterative nature of
SOLO is an issue of concern for both the proj-
ect consortia and stakeholders involved. In the
first attempt to do so, in 2024, an exercise was
planned and executed. This exercise was divided
into two stages. First, stakeholders that attend-
ed the cross-fertilisation event in Sofia were able
to participate casting their vote in person during
the session dedicated to the prioritisation of the
top ten knowledge gaps identified by each TT.

All top ten knowledge gaps of each TT
were detailed in different sticky notes (except
for the Footprints of soil TT that identified sev-
en). These were put into the wall along with a
sign that allowed them to identify which knowl-
edge gaps referred to which TT. Then, the proj-
ect coordinator explained that each person will
be able to select three of the ten knowledge
gaps per TT. To do this, circular stickers were
provided so all the votes could be easily visual-
ised after the exercise. Participants casted their
votes simultaneously.

Furthermore, after the meeting in Sofia in
November 2025, a second online exercise was
conducted aiming at involving the stakeholders
that could not attend the in-person meeting. For
the project, it is pivotal to ensure the active par-
ticipation of most stakeholders, especially in the
decision-making processes. The objective of
the online session was to replicate the proce-
dure that took place in Sofia; hence, the same
conditions and instructions were given. The vot-
ing was carried out through a Microsoft form al-
lowing participants to select only three of the
ten knowledge gaps per TT. After the voting ex-
ercise finished, TT leaders received the results
so that they could share it with their respective
stakeholders.

Finally, the votes gathered from the online
session were added to the ones from the in-per-
son exercise in Sofia to obtain the result of both
exercises. This is the prioritisation that was em-
bedded into the outlook chapters. Therefore,
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the top three knowledge gaps are extensively
detailed in the document, meanwhile describing
the remaining seven.

For the current iterative process (2025), the
methodology to prioritise the knowledge gaps is
yet to be refined if applicable. In this sense the
selection of the method to be implemented is be-
ing discussed collectively among all the consor-
tia partners. As mentioned, the iterative nature of
SOLO coupled with the learning-by-doing reflex-
ive process used is core in the project and there-
fore the prioritisation of the knowledge Gaps.

The Outlook for Soil
Health

The actionable roadmaps of the nine SOLO Think
Tanks are published as chapters in the Outlook
for Soil Health 2025, and together contain the
state-of-the-art information on knowledge and
innovation needs of the EU to increase soall
health. This publication represents the combined
knowledge and expertise of the SOLO Think
Tanks in identifying the Key Knowledge Gaps
that need to be solved to move forward regard-
ing each of the nine topics addressed by SOLO,
the bottlenecks that have prevented filling these
gaps in the past, and the resulting required ac-
tions. The Qutlook is a comprehensive, but also
living, document that will grow with further input
by the stakeholder communities, the public, and
the Soil Mission.

The Outlook for Soil Health 2025 also pro-
vides the basis for developing an overarching
roadmap that concisely integrates the outputs of
the SOLO Think Tanks, Regional Nodes and Soil
Weeks. This overarching roadmap results from
the horizontal integration across the thematic
roadmaps of the Think Tanks, and the vertical
integration by inputs from the Regional Nodes,
Soil Weeks and, if applicable, other European
projects (Figure 1). The core of the overarching
roadmap will consist of the identified overarching
themes of the key knowledge gaps, bottlenecks
and actions, presented in quantitative tables.
Furthermore, the links between knowledge gaps
and associated bottlenecks and actions will be
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analysed, to identify leverage points in the tran-
sition towards increasing soil health in Europe.
These analyses together will also demonstrate
the synergies and trade-offs between the dif-
ferent mission objectives. The overarching road-
map for SOLO is updated and in open review in
an iterative process.

Both the Outlook for Soil Health 2025, and
the resulting overarching roadmap are intend-
ed as a resource for policy-makers, officials,
and those interested in soil health priority-areas
across the EU in developing an agenda for fund-
ing research and innovation initiatives that is tai-
lored to current needs.
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1. Introduction More precisely, according to the United Nations

(UN), Land Degradation means ,reduction or loss
One of the primary processes jeopardizing soil  of biological or economic productivity and com-
health at a global scale is Land Degradation (LD).  plexity of rainfed cropland, irrigated cropland, or
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range, pasture, forest, and woodlands resulting
from land uses or a process or combination of
processes, including processes arising from hu-
man activities and habitation patterns, such as: (i)
soil erosion caused by wind and/or water; (ii) de-
terioration of the physical, chemical and biologi-
cal or economic properties of soil; and, (iii) long-
term loss of natural vegetation. Land degradation,
therefore, includes processes that lead to surface
salt accumulation and waterlogging associated
with salt-affected areas.” (United Nations 2007).

Notably, in the realm of soil conservation,
there is often confusion between the terms soil
degradation and land degradation, with soil ero-
sion mistakenly considered synonymous with
both. Furthermore, soil degradation encompass-
es more than just erosion, Soil degradation can
involve: water erosion (includes sheet, rill and
gully erosion); wind erosion; salinity (includes
dryland, irrigation and urban salinity); loss of or-
ganic matter; fertility decline; soil acidity or alka-
linity; structure decline (includes soil compaction
and surface sealing); mass movement; and soil
contamination (NSW Department of Planning,
Industry and Environment, 2019). However, land
degradation covers a broader scope beyond soil
alone. Referring to its usage in land evaluation
(FAO 1976), the term ,land” contains all natural
resources contributing to agricultural production,
including forestry and livestock production. This
definition includes landforms, climate, water re-
sources, soils, and vegetation (both forests and
grasslands) (FAO 1999). Several interconnect-
ed components of land degradation exist, all of
which may lead to a decrease in agricultural pro-
duction (Douglas 1994), as cited by the Food and
Agriculture Organization (FAO) (FAO 1999). Land
degradation generally also includes processes
other than soil degradation, such as alterations
of superficial and groundwater resources, re-
duction of quantity and quality of plant produc-
tion, biodiversity degradation (e.g. species ex-
tinction), or climate deterioration (FAO 1999).

In the context of the Soils for Europe (SOLO)
project, and also in this Scoping Document, which
aligns with the Soil Mission Implementation Plan
of the EU, the term ,Land Degradation” primarily
refers to “Soil Degradation”. This stems from the
fact that according to the Soil Mission, the objec-

tive (Specific Objective 1) “Reduce Land degra-
dation relating to desertification”, is linked solely
to soil health indicators, such as soil organic car-
bon stock, presence of soil pollutants and excess
of salts (European Commission 2019a).

The imperative to combat Land degradation
on both European and global scales arises from
the close association of Land Degradation with
critical losses of biodiversity and key ecosystem
services (Keesstra et al. 2018, Panagos and Kat-
soyiannis 2019). Furthermore, a substantial con-
sensus within reports and assessments indicates
that a significant segment of the Earth’s land sur-
face faces degradation, estimated at between
20% and 40% of the total global land area (UN
Convention to Combat Desertification 2019a, UN
Economic and Social Council 2019, United Nations
Convention to Combat Desertification 2022). In
this light, according to Wischnewski 2015, 169 out
of 194 countries, participating in the United Na-
tions Convention to Combat Desertification (UN-
CCD), are affected by Land Degradation. Thence-
forth, the degree of global land degradation today
is considered to be negatively affecting 3.2 billion
people worldwide (Brooks et al. 2006, Cardinale
etal. 2012, Haddad et al. 2015, UNDP 2019, Pana-
gos and Katsoyiannis 2019, Li et al. 2021).

As for the evolution of Land Degradation, it
is essential to highlight that the Global Land Out-
look report (United Nations Convention to Com-
bat Desertification 2022) warns that without
immediate actions, the problem of land degrada-
tion will persist and escalate. By the year 2050,
if the current rates continue, an expanse equiv-
alent in size to South America is projected to ex-
perience degradation (United Nations Conven-
tion to Combat Desertification 2022). Moreover,
according to the Global Risk Report of the World
Economic Forum 2025, natural resources short-
ages, including soil, represents the 4th most im-
portant long-term financial risk. This emphasizes
the pressing need to address land degradation
urgently in order to avert further environmental,
economic and societal deterioration.

Specific concerns related to land degra-
dation are also prominent within the European
Union (EU). More precisely, data drawn from all
EU Member States, as outlined in the Soil Mis-
sion Implementation Plan (European Commission

SOLO Outlook 2025
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2019a), highlight several alarming issues. Nota-
bly, it reveals that 83% of agricultural soils within
the EU contain residual pesticides. In addition, a
substantial number of potentially contaminated
sites, amounting to 2.8 million, exist, with a mere
65,000 having undergone remediation efforts by
2018 (European Commission 2019a). Within the
EU, issues related to soil erosion by water, com-
paction, soil sealing and excavation also persist.
Approximately 24% of EU land is marked by un-
sustainable water erosion rates, 23% experienc-
es compaction, soil sealing affected about 2.7 %
of EU land, and a staggering 520 million tonnes
of soil are excavated and treated as waste, de-
spite the majority of it not being contaminated
(European Commission 2019a). Relevant find-
ings are also addressed in the recently published
State of Soils for Europe report and the EUSO
Soil Degradation Dashboard (European Comis-
sion and European Environment Agency 2024).
In addition, the aforementioned Soil Mis-
sion Implementation Plan (European Commis-
sion 2019a) underscores the pressing imperative
to address land degradation and desertifica-
tion*'. This urgency is reflected in the inclusion
of the ,Reduction of land degradation relating
to desertification within the Specific Objectives
(more precisely, SO1) of the Soil Mission. In par-
ticular, the SO1 is intricately linked to the Mis-
sion’s Target 1.1, which aims to ,Halt desertifica-
tion to help achieve land degradation neutrality
and initiate restoration—a commitment aligned
with Sustainable Development Goal (SDG) tar-
get 15.3 (Combat desertification, restore de-
graded land and soil, including land affected by
desertification, drought and floods, and strive to
achieve a land degradation neutral world). The
SO1 works as a catalyst for the attainment of
other SDGs (European Commission 2006b, IPCC
(Inter-Governmental Panel on Climate Change)
2001, United Nations Convention to Combat De-
sertification 2022), as well as key initiatives such
as the EU Soil Strategy, the Green Deal, the Soil
Monitoring Law, the 2030 Biodiversity Strategy,
the Zero Pollution Action Plan, the Farm to Fork
Strategy, the Circular Economy Action Plan, the
Nature Restoration Law, and the EU Climate Law.
Mitigating land degradation necessitates
a comprehensive approach encompassing sus-
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tainable land management practices, support to
the farmers and land managers, multiple stake-
holders working together, soil conservation, re-
forestation efforts, and initiatives to curb e.g.,
soil pollution and contamination. Moreover, de-
spite the EU focus of the SOLO project, interna-
tional collaboration, as exemplified by the UNC-
CD, also holds significant importance in tackling
this challenge and safeguarding the integrity of
our land resources for the benefit of future gen-
erations. The upcoming decades will be decisive
in shaping and implementing a fresh and trans-
formative EU and global land management and
conservation strategy.

To support these efforts, the Land Degra-
dation Think Tank forges a vibrant and transdis-
ciplinary cluster through the active collaboration
and engagement of key stakeholders and a di-
verse network of partners from various fields
of knowledge, brought together by their com-
mitment to soil health. This collaborative effort,
along with an extensive literature review, aims
to intricately weave together a roadmap that
transcends traditional boundaries, seeking to
pinpoint and address critical knowledge gaps,
navigate through bottlenecks, and uncover cut-
ting-edge technological innovations (Fig. 1). The
ultimate goal is to craft a comprehensive strat-
egy that effectively propels the mission to en-
hance soil health.

Thenceforth, the Land Degradation Think
Tank’s main objectives are to:

e Identify and enumerate key knowledge
gaps related to land degradation in the EU,
through a transdisciplinary approach.

 Identify and delineate drivers and obstacles
(Bottlenecks) that hinder soil health in the EU.

« Identify the needs and priorities of the EU to
achieve Land Degradation Neutrality by 2050.

o Identify and describe pioneering actions
and activities that are crucial to overcoming
the barriers that affect land health.

o Co-develop aresearch and innovation road-
map for the EU Soil Mission in relation to land
degradation and integrate it into an overar-
ching roadmap tackling the specific mission
objective. Integral to this roadmap is the
establishment of science-based guidelines
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Figure 1. Healthy soils connection to ecosystem services, contributing to the achievement of the SDGs and supporting

the one health concept.

for defining threshold values for soil health,
which will serve as critical benchmarks for
monitoring progress, guiding restoration ef-
forts, and fostering sustainable land man-
agement practices across the EU.

Given the above, the Land Degradation
Think Tank adds value by uniting experts across
disciplines to identify knowledge gaps, over-
come obstacles, and co-develop a science/
stakeholders-based roadmap that guides EU ef-
forts toward achieving land degradation neutral-
ity by 2050 and improving soil health.

2. State-of-the-Art

2.1. Current state of
the knowledge on Land
Degradation

In the field of soil quality monitoring, the EU has
adopted the definition of the FAO for Sustainable
Soil Management (SSM) (FAO - ITPS 2020). Ac-
cording to the FAO, SSM includes the prevention,
minimization, or combating of soil quality deterio-

10

rations which, in their extreme expression, might
potentially lead to land degradation and desert-
ification. At the same time, the United Nations
Convention to Combat Desertification (UNCCD)
has set a specific goal to achieve Land Degra-
dation Neutrality (LDN) by 2030 (United Nations
Convention to Combat Desertification 2017). In
particular, the UNCCD’s target is to stop the on-
going loss of healthy soils due to degradation,
and promotes for the first time a two-pronged
approach, with measures to prevent or reduce
land degradation combined with other compen-
sational measures for land degradation of the
past. Implementing such effective measures re-
quires a better understanding of Land Degrada-
tion drivers (e.qg. aridity, unsustainable agricultur-
al practices, forest fires, urbanization, mining and
quarrying, drought), and processes (e.g. erosion,
flooding, soil structure deterioration, pollution,
soil sealing, compaction, loss of biodiversity).

Considering the paragraphs above, Land
Degradation represents an essential ,wicked
problem” - a multifaced challenge - character-
ized by interconnected environmental, societal,
economic and policy dimensions (Fig. 2).

Land Degradation poses significant chal-
lenges. Therefore, in recent decades, several

SOLO Outlook 2025
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methods, approaches and datasets have been
developed and used to assess the status of the
complex and dynamic processes of Land Degra-
dationin Europe, at different scales. More precise-
ly, examples of datasets that provide information
about Land Degradation components are the Soil
Organic Carbon Dataset*? and the Salt Affected
Soils Dataset*? of the FAO. The FAO also provides
a plethora of relevant complementary datasets,
such as the Map of Agreement on Global Crop-
land** and networks. An example network refers
to the Global Soil Laboratory Network (GLOSO-
LAN), established in 2017, and aims to enhance
the capabilities of soil laboratories worldwide by
standardizing analytical methods and data. This
harmonization is essential to: i) Provide consistent
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and comparable information across countries and
projects, ii) Facilitate the creation of unified soil
datasets, and iii) Support informed decision-mak-
ing for sustainable soil management.

Moreover, in 2023, the Joint Research Cen-
ter's soil team (JRC D3), developed the EU Soil
Observatory (EUSO) dashboard that integrates
several soil related datasets. In particular, the
EUSO Dashboard offers insights into poten-
tial locations (spatial resolution of 500 meters)
of unhealthy soils within the EU, with plans for
regular updates based on emerging scientific
findings. As for the datasets that synthesize the
EUSO Dashboard, they refer to but are not limit-
ed to erosion related datasets, such as the Soil
Erosion by Water Dataset*® (based on the RUSLE

1
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model) and the Soil Erosion by Wind Dataset* ©
(based on the RWEQ model), soil pollution rele-
vant datasets, e.g. the Copper Excess Dataset*’
and the Mercury Excess Dataset* & and soil nu-
trient datasets, such as the Phosphorous Defi-
ciency and the Phosphorous Excess Dataset*®.
Additional datasets of the EUSO Dashboard refer
to the Potential Threats to Soil Biodiversity Data-
set*’% the Soil Compaction Dataset*™ and the
Soil Sealing Dataset*'2,

Furthermore, over the recent decades, var-
ious concepts and methodologies have emerged
to establish schemes for monitoring and assess-
ing Land Degradation. More precisely, Gianoli
et al. 2023, evaluated Land Degradation status
at the EU level by applying the Convergence of
Evidence (CoE) conceptual framework, originally
developed for the World Atlas of Desertification
(WAD), and incorporating additional indicators of
land status and trends. CoE entails the idea that
evidence from disparate and independent sourc-
es can converge to form robust conclusions (Gi-
anoli et al. 2023). This conceptual framework
has been employed in environmental science,
particularly in conjunction with satellite remote
sensing data (Cherlet et al. 2018, Ivits et al. 2013,
Martinez-Valderrama et al. 2022). In the study
by Gianoli et al. 2023 the additional indicators
encompassed data such as population density
and change, groundwater table decline, acidifi-
cation, and eutrophication. These were comple-
mented by variables aligned with those used in
the WAD, such as soil erosion by water and wind,
land cover, land productivity dynamics, baseline
water stress, and biodiversity loss.

Similarly, another continental (EU-scale)
study by Schillaci et al. 2022 evaluated the Unit-
ed Nations Sustainable Development Goal 15.3.1
indicator of Land Degradation across Europe.
This study applied the UNCCD methodology and
utilized the Trends.Earth*' software, while also
assessing the influence of alternative datasets,
such as NDVI time series at varying spatial res-
olutions, alongside policy-relevant data sources
for land cover (e.g., CORINE) and soil organic
carbon (SOC) stocks (e.g., LUCAS dataset).

At the country scale, examples of appli-
cations employing the UNCCD approach, sup-
plemented by Earth Observation (EQ) and soil
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monitoring data, include the work of Wunder and
Bodle 2019, who developed a land use change-
based indicator for Germany. However, this ap-
proach may be affected by declines in land pro-
ductivity (LP) due to decoupling strategies within
the Common Agricultural Policy, such as reduced
agricultural intensity (Schillaci et al. 2022). An-
other example is a high-resolution (20 m) as-
sessment conducted for Italy, which incorporat-
ed additional variables, such as loss of habitat
quality, burnt areas (2008-2018), and the densi-
ty of artificial land cover (Assennato et al. 2020).
Despite these advancements, the baseline
assessment procedure, as outlined in the UN-
CCD Good Practice Guidance (UNCCD 2021),
faces challenges in some parts of the EU. These
challenges include limited data availability due
to small land-use parcel sizes, land suitability
issues, resilience constraints, and socio-cultur-
al and economic factors. As a result, monitoring
land degradation using the three UNCCD land-
based global indicators may lead to false posi-
tive classifications or an underestimation of the
extent of degraded land (Schillaci et al. 2022).
In this light, assessing the indicator 15.3.1,
which measures the proportion of degraded land
over the total land area, necessitates ongoing
data collection by countries to monitor changes
spatially and temporally. Earth Observation can
significantly contribute to both generating this
indicator in countries lacking data and enhancing
existing national data sources (Dubovyk 2017).
To address this challenge, Giuliani et al. 2020 in-
troduced an innovative, adaptable, and scalable
approach for monitoring land degradation across
different scales (national, regional, and global)
by utilizing various components of the Global
Earth Observation System of Systems (GEOSS)
platform to harness Earth Observation resources
for informing SDG 15.3.1. The proposed approach
adheres to the Data-Information-Knowledge pat-
tern, leveraging the Trends.Earth model (http://
trends.earth) along with diverse data sources to
compute the indicator (Giuliani et al. 2020).
Other essential examples of these concepts
and approaches are the usage of the MEDALUS
method, where the Climate Quality Index (CQl),
the Soil Quality Index (SQI), the Vegetation Qual-
ity Index (VQI), the Management Quality Index
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(MQI) and the Social Quality Index (SoQIl) were
integrated under several climate change sce-
narios (Perovi¢ et al. 2021, Pravalie et al. 2020).
Besides, other components that describe Land
Degradation in the literature refer to:

e Biophysical components (e.g. plant cov-
er and agricultural productivity trends, net
primary productivity, soil erosion etc.) (Eu-
ropean Commission 2006aAyalew et al.
2020, Dubovyk 2017, European Commission
2006b, Panagos et al. 2020Giuliani et al.
2020, Jucker Riva et al. 2017),

e Environmental ClientEarth 2022, Gholiza-
deh et al. 2018, Giuliani et al. 2020, Gorji et
al. 2019, Pravalie et al. 2017, Taghadosi et al.
2019, Zizala et al. 2018) and/or

e Socio-economic factors (e.g. poverty, mi-
gration and population density) (Reed and
Stringer 2016Akhtar-Schuster et al. 2017,
Barbier and Hochard 2018, Keesstra et al.
2018European Commission 2020c, Europe-
an Commission 2020b, Ustaoglu and Collier
2018Blaikie and Brookfield 2015, Istanbuly
et al. 2022, Panagos et al. 2024, Sartori et
al. 2019) as well as the

o Utilisation of long-term satellite observa-
tions (e.g. Sentinel-2 optical satellite con-
stellation) (ClientEarth 2022, European
Commission 2020c, United Nations 2023)
which provide a practical way of generating
a monitoring system that can derive cost
effective and widely applicable indicators
of Land Degradation.

In addition, Land Degradation is also as-
sessed by fine-scale field-based and modeling
techniques, Geographic Information Systems
(GIS), informatics (Machine-Learning and Artifi-
cial Intelligence models), time-series and resid-
ual trends (European Commission 2020c, Zizala
et al. 2018, European Commission 2020b, Unit-
ed Nations 2023, European Commission 2019b,
European Commission 2021b, Dahal et al. 2024,
European Commission 2021a, Gholizadeh et al.
2018, Perpifa Castillo et al. 2021, Xie et al. 2020,
Petropoulou et al. 2023). However, throughout
the lifespan of the Soils for Europe project, it is
important to first clarify what information should
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be used to assess Land Degradation, rather than
focusing on how this information is processed. By
identifying the key data sources and indicators—
such as soil health metrics, land cover changes,
or productivity trends—a clear and consistent
framework for soil degradation assessments can
be established. Once the essential information is
defined, then, the most effective methods (e.qg.,
GIS, Al, or modeling techniques) to process and
analyze this data can be explored. This approach
could ensure a streamlined and actionable take-
home message from the Land Degradation Think
Tank to the relevant stakeholders, emphasizing
the critical indicators to include in soil degrada-
tion assessments before delving into the techni-
calities of data processing.

Considering the above, it can be concluded
that there have been significant advancements
in scientific research, datasets, policies, and
strategies aimed at addressing land degradation.
Nevertheless, critical knowledge (application)
gaps persist, hindering comprehensive solutions
and effective knowledge transfer regarding this
multifaceted issue. Land degradation is a com-
plex, transitional problem with multiple drivers,
scales, and perspectives, requiring integrated
monitoring and assessment schemes (UN Con-
vention to Combat Desertification 2019b, Reyn-
olds et al. 2007, Vogt et al. 2011, Hessel et al.
2014, European Commission 2015, European
Environment Agency 2019). While efforts have
been made, challenges remain in understanding
the full scope of land degradation, its drivers,
and its socio-economic and ecological impacts.

For instance, while restorative practices like
biochar and integrated nutrient management
show promise, there is insufficient research on
trade-offs, cost-effectiveness, and scalabili-
ty across diverse land uses and pedo-climat-
ic zones (Marousek and Trakal 2022, Lal 2015,
Keesstra et al. 2024). Additionally, gaps and
limitations in data availability, quality and mon-
itoring, along with the integration of cultural and
socio-economic values into land management
decisions further complicate efforts to achieve
Land Degradation Neutrality (LDN) and under-
stand LD effects and drivers (Dubovyk 2017,
Jucker Riva et al. 2017, Zizala et al. 2018, Gholiza-
deh et al. 2018, Taghadosi et al. 2019, Giuliani et
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al. 2020, Ayalew et al. 2020, Bardgett et al. 2021,
Jones et al. 2021, Silva et al. 2023). Thenceforth,
the lack of comprehensive, standardized data
and the underrepresentation of certain ecosys-
tems, such as grasslands, mountainous regions,
and urban soils, highlight the need for more in-
clusive and context-specific research (Lobmann
et al. 2022, Chowdhury et al. 2024).

Moreover, while participatory approaches
and stakeholder engagement are vital for sus-
tainable land management, empirical evidence
on their effectiveness and knowledge transfer re-
mains controversial (Knierim et al. 2015, Lébmann
etal. 2022). Economic assessments of land degra-
dation and restoration efforts also face challeng-
es, including inconsistent methodologies and the
exclusion of non-monetary considerations, which
hinder the development of robust, site-specific
solutions (Panagos et al. 2018, Tepes et al. 2021).

In a nutshell, while progress has been made
in understanding LD, the trajectory of future re-
search must embrace a diverse array of topics,
spanning from the exploration of the processes,
mechanisms, and impacts of land degradation to
the nuanced examination of the environmental,
climatic, political, social, cultural and financial
aspects of Land Degradation as driving forces
behind its persistence (European Commission
2021c). Embracing cutting-edge technologies
and monitoring methodologies, advancing theo-
retical frameworks, and refining ecological res-
toration approaches are imperative for fostering
sustainable land management practices (Euro-
pean Commission 2021c). Moreover, interdisci-
plinary collaboration is essential for unraveling
the complex dynamics inherent in land degra-
dation phenomena and the formulation of robust
policy frameworks is crucial to guide sustainable
land management initiatives (European Commis-
sion 2021c).

2.2 Prioritization of
knowledge gaps

The approach of the Land Degradation Think
Tank (refer to Fig. 1) is designed to identify

Knowledge Gaps, Actions, and Bottlenecks (see
Section 3) throughout the SOLO project. Once a
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set of Knowledge Gaps was identified, the next
step involved prioritizing these Knowledge Gaps
to determine the most critical areas requiring re-
search and funding within the EU.

The resulting prioritized (Top 10) Knowledge
Gaps for the Land Degradation Think Tank can
be found in Table 1 (Suppl. material 4) and are
addressed in detail in Section 3.1. It is noteworthy
that a complete list (and a short description) of all
identified knowledge gaps is given in section 3.3.

3. Roadmap for the Land
Degradation Think Tank

Despite the recent surge in scientific publica-
tions, policies, and strategies dedicated to ad-
dressing land degradation, it is widely recog-
nized that significant knowledge gaps persist.
Furthermore, even with maximum utilization of
these various policies and strategies, it remains
challenging to comprehensively address all as-
pects of land and its associated threats (Europe-
an Commission 2022, Xie et al. 2020).

In this regard, the complex issue of Land Deg-
radation needs a combination of the above-men-
tioned monitoring and assessment schemes (UN
Convention to Combat Desertification 2019b) as
Land Degradation is considered a complex issue
with multiple dimensions, scales and perspectives,
itis transitional and has multiple drivers and actors.
This conclusion is also supported by other scien-
tists such as Reynolds et al. 2007, Vogt et al. 2011,
Hessel et al. 2014, European Commission 2015,
and the European Environment Agency 2019.

Considering the above, it can be conclud-
ed that there are various knowledge gaps, and
therefore, activities but also associated bottle-
necks that should be considered regarding Land
Degradation and the achievement of the aim of a
LDN Europe in the upcoming years. These gaps
highlight critical areas where research, innovation,
and policy interventions are urgently needed.

The identified Knowledge Gaps are detailed
in the following subsections:

» Section 3.1 focuses on the Key Knowledge
Gaps, which represent the top three priori-
ties (Top 3 KGs) as outlined in Table 1.
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e Section 3.2 covers the remaining prioritized
Knowledge Gaps, ranked from the Top 4 to
the Top 10.

e Section 3.3 provides an overview of all
identified Knowledge Gaps, Actions, and
Bottlenecks, which collectively form the
foundational elements of the Roadmap.

By organizing these elements into a struc-
tured framework, the Roadmap aims to provide a
clear and actionable pathway for addressing Land
Degradation and advancing toward LDN in Europe.

3.1 Key Knowledge Gaps

The Key Knowledge Gaps, representing the top
three priorities as determined by stakeholder
voting, are outlined below:

Knowledge Gap 1

Identification of the most efficient and cost-ef-
fective Land Degradation prevention and res-
toration measures, incorporating an assess-
ment of trade-offs between different land uses
and pedo-climatic zones.

As the EU grapples with soil degradation,
scientists and practitioners have identified var-
ious land use and restoration measures to pre-
vent and reverse degradation. These efforts
span from traditional to modern knowledge and
try to address the specific needs of different re-
gions and land types. Among the promising re-
storative and sustainable practices are biochar
(Marousek and Trakal 2022, Kalu et al. 2022,
Fisarova et al. 2024), organic matter, and nutri-
ent-integrated management (Lal 2015, Keesstra
et al. 2024). These measures are designed to
minimize losses and maximize the efficiency of
soil, water, and nutrient use, which is the guid-
ing principle of achieving ,more from less” in
land management (Lal 2015). However, much of
the EU research funding and literature on sus-
tainable land management (SLM) practices has
predominantly focused on agricultural soils, with
insufficient attention given to other land uses,
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such as urban soils or industrial and post-mining
soils (e.g., Farrell et al. 2020, Table 1 of Lobmann
et al. 2022, Psarraki et al. 2023, Figure 7 to 10 of
Chowdhury et al. 2024, Zoka et al. 2024). Despite
the growing work in land degradation prevention
and restoration, challenges persist (European
Commision 2020). Limited studies on trade-offs
between different land uses and pedo-climatic
zones, cost-benefit analyses, and the applica-
bility of restoration techniques across various
scales and socio-ecological contexts hinder the
widespread adoption of effective solutions. As
such, there is an urgent need for more compre-
hensive research that integrates diverse land
uses, such as grasslands, urban areas, forested
lands, and agricultural spaces, alongside other
areas with various activities (industrial, mining,
etc.). Some example studies that display such
limitations can be found below:

Addressing Trade-offs in
Restoration: Insights from
Grassland Studies

A notable contribution to understanding these
challenges is the study by Bardgett et al. 2021,
which examined limited awareness and research
on grassland degradation, at a global, and Eu-
ropean scale. Their study emphasized the im-
portance of grasslands in ecosystem functioning
and biodiversity maintenance but pointed out
that restoration efforts for these ecosystems re-
main underfunded and fragmented. Bardgett et
al. 2021 applied a multi-criteria decision analy-
sis (MCDA) model to identify sufficient solutions,
addressing complex trade-offs among conser-
vation practices (e.g. conventional and organic)
and incorporating socio-economic factors, such
as access rights and power dynamics between
stakeholder groups (Martin-Lopez et al. 2019).
However, to achieve better outcomes from de-
cision-making tools like MCDA, it is crucial to
focus on the optimal allocation and prioritization
of limited resources, especially since funding for
grassland restoration is often scarce (Bardgett et
al. 2021). In addition, they highlighted the neces-
sity for new approaches that allow for the stan-
dardized assessment of grassland conditions,
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considering various environmental and climatic
contexts. These approaches should evaluate the
extent of grassland degradation, its impacts on
biodiversity and ecosystem services, and the ef-
fectiveness of restoration initiatives. Moreover,
the fragmentation of restoration efforts across
regions and organizations further complicates
these challenges, as data often remains incom-
patible or inaccessible, hindering knowledge
sharing (Bardgett et al. 2021). Thus, the scaling
up of restoration initiatives, particularly in grass-
land and other sensitive ecosystems, demands
significantly more resources and concerted ef-
fort to maximize benefits and minimize trade-
offs (IPBES 2018, Roe et al. 2021).

Cost-Effectiveness in Large-
Scale Restoration: A Participatory
Approach

Another example of innovative restoration plan-
ning is found in the study by Silva et al. 2023,
who developed a participatory cost-effective-
ness model to identify high-priority areas for
landscape restoration. Their work, conducted in
Southeastern Spain, a semi-arid region severely
impacted by human activity, highlights the im-
portance of considering both the financial costs
and the potential improvements in ecosystem
service delivery. The model they created not
only accounts for the costs of restoration but
also integrates stakeholder perspectives, offer-
ing a more holistic view of the restoration pro-
cess. In their study, Silva et al. 2023 found that
while restoration costs are generally lower than
the costs of degradation, securing sufficient
funding for restoration efforts in the short term
remains a significant barrier. This underlines the
importance of cost-optimization strategies and
effective prioritization to make the most of avail-
able resources (Molin et al. 2018). The study
also emphasized the need to improve the repre-
sentativeness of stakeholder groups by includ-
ing underrepresented sectors such as youth,
women, and those with lower education levels
(Silva et al. 2023). Such inclusiveness can help
address imbalances in power dynamics and en-
sure that all perspectives are considered in deci-
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sion-making processes. Furthermore, Silva et al.
2023 suggested that future restoration projects
should focus on enhancing long-term stakehold-
er engagement through improved communica-
tion, clear modeling approaches, and real-time
modeling tools that help stakeholders visualize
restoration outcomes (Green et al. 2019, Hooft-
man et al. 2022). These measures would foster
greater involvement in decision-making and en-
sure that restoration plans align with the needs
of diverse communities.

In conclusion, achieving effective and
cost-efficient land degradation prevention and
restoration requires a multifaceted approach.
While the application of restorative practices
such as biochar and crop rotation show promise,
scaling these efforts across diverse land types
and regions presents considerable challeng-
es. The integration of socio-economic factors,
stakeholder engagement, and cost-effective-
ness analysis tools, such as MCDA and participa-
tory models, can help address these challenges.

Additionally, there is a need for standard-
ized, European, national and local approaches to
assess land degradation and guide restoration
efforts, particularly in regions, where restoration
is often underfunded. As research and case
studies continue to evolve, it will be crucial to re-
fine these strategies, improve stakeholder par-
ticipation, and better understand the trade-offs
of soil management practices between land uses
and pedo-climatic zones.

Knowledge Gap 2

Lack of thorough understanding of the interac-
tions between Land Degradation and Ecosys-
tem Services. Land degradation continues to
be a significant concern, with profound implica-
tions for ecosystems and the services (ES) they
provide (Guerra et al. 2022). However, there are
considerable knowledge gaps and limitations in
understanding the interactions between land
degradation and the delivery of ES. These gaps
hinder effective policymaking and the develop-
ment of sustainable management strategies.
Some limitations that can be found in the litera-
ture are discussed below:
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To begin with, accurate and reliable data
on land degradation and ES is crucial for under-
standing their interactions. Empirical evidence
obtained through field and landscape indicators
is vital for assessing soil health and the ser-
vices provided by ecosystems (Petrosillo et al.
2023). However, the scarcity of region-specific
measurements remains a significant barrier to
advancing research in this field (Petrosillo et al.
2023). The lack of comprehensive and standard-
ized data across different landscapes, combined
with fragmented knowledge, often limits the
ability to draw broad conclusions (Petrosillo et
al. 2023). To effectively assess and monitor land
degradation, there is a growing need for inno-
vative tools and technologies. One of the most
promising approaches is the use of remote sens-
ing data, which can provide valuable insights
into the type, extent, and severity of land deg-
radation. By leveraging satellite imagery and ae-
rial data, remote sensing allows for large-scale,
precise monitoring of land conditions over time,
enabling more accurate identification of deg-
radation patterns. This technology plays a cru-
cial role in understanding how land is changing
and can guide targeted interventions to mitigate
and reverse degradation (Prokop 2020, de OI-
iveira et al. 2022). However, challenges remain
in integrating this data with on-the-ground field
assessments (Prokop 2020, de Oliveira et al.
2022, Tziolas et al. 2024). Furthermore, despite
the progress in using remote sensing for mon-
itoring, the complexity of soil and ecosystem
dynamics, including the role of soil biodiversity
and its contribution to ES, remains insufficient-
ly understood. More precisely, according to the
study of Ferreira et al. 2022, associated with soil
degradation in the Mediterranean region, local
research has mapped soil heterogeneity and
degradation through monitoring sites and long-
term experiments at relatively small scales (e.g.,
Bardo et al. 2019). However, this information is
seldom collected or inventoried (FAO 2019).
While all EU countries are required to produce
state-of-the-environment reports, most Medi-
terranean countries do not regularly assess their
soil resources (Solomun et al. 2020).

Moreover, one significant limitation in ES re-
search is the difficulty in understanding, quan-
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tifying and integrating cultural ecosystem ser-
vices (CES) into land management decisions. In
particular, cultural services, including aesthetic,
spiritual, and recreational values, are vital to hu-
man well-being but are often difficult to define
and measure (Jones et al. 2021). This is primar-
ily due to the challenge of understanding what
motivates individuals to engage with nature and
how these motivations relate to various cultur-
al, social, economic, and psychological factors
(Jones et al. 2021). In this light, several studies
on soil degradation tend to focus predominant-
ly on the natural dimensions, leaving insufficient
attention to the cultural and social factors; how-
ever, a similar investment could lead to a similar
degree of understanding.

To address these limitations, the study of
Jones et al. 2021 proposed a framework that
integrates cultural, social, and human capital,
offering a promising approach to understand-
ing the role of these factors in CES. While their
trans-disciplinary study demonstrated that cul-
tural capital, measured through EcoCentrism,
was a strong predictor of environmental engage-
ment, it also revealed that a significant portion of
the variation in people’s perceptions of natural
spaces, such as urban meadows, remained un-
explained. This points to a need for new metrics
and frameworks that can capture the full range
of motivations and values associated with cul-
tural interactions with the environment. The in-
corporation of variables like intergenerational
knowledge and indigenous relationships with
land could further enrich this framework and
provide a more nuanced understanding of CES
(Jones et al. 2021).

Another study that investigated the re-
search gap between soil biodiversity and the
the delivery of soil ecosystem services, from
Oberreich et al. 2024, with a focus on Germa-
ny, highlighted that soil and soil biodiversity are
often overlooked in ecosystem assessments.
Additionally, the social awareness of the term
,ecosystem services” remains limited (Oberre-
ich et al. 2024). Moreover, the findings suggest
that the studies in the reviewed papers primarily
focused on smaller spatial scales, emphasizing
local and regional contexts. This is especially rel-
evant for soil biodiversity, which, as the literature
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reviewed, varies due to several locally specific
factors (e.g., Kbhler et al. 2020).

Furthermore, land degradation and its impact
on ES must be understood within broader so-
cio-economic and policy contexts. While the role
of soil-related ES in supporting human well-being
is widely recognized, the interactions between ES
and land use policies, particularly in terms of miti-
gating land degradation, need further exploration
(Wei et al. 2018, Mengist et al. 2020). The principle
of ,Avoid > Reduce > Reverse” land degradation,
which emphasizes avoiding further degradation
as the most cost-effective strategy, is gaining
traction in the context of land degradation neu-
trality (UNCCD 2017, Petrosillo et al. 2023). How-
ever, examples that depict a lack of policy integra-
tion in land degradation and ES research remain a
major limitation. A notable example refers to the
mountainous regions, where just a few studies link
ecosystem service outcomes to actionable policy
recommendations (Wei et al. 2018, Mengist et al.
2020). This gap in literature points to the need for
more research on the role of policy in managing
trade-offs and synergies between ES, land degra-
dation, and human activities. In addition, there is a
gap in research related to soil governance, partic-
ularly regarding the interactions between different
governance mechanisms and their effects on soil
management (Mason et al. 2023). This suggests a
need for further exploration into institutions, poli-
cy support, and training in soil governance (Helm-
ing et al. 2018, Mason et al. 2023).

One other significant aspect is the valoriza-
tion of ES which remains a significant barrier to
understand the interactions between ecosystem
services and land degradation. While valuable
progress has been made in estimating the eco-
nomic value of ES, particularly in the context of
sustainable land management (SLM), the lack
of reliable, comprehensive datasets hinders the
full assessment of ecosystem service costs and
benefits (Kieslich and Salles 2021, Mirici 2022).
For instance, in landscape restoration projects,
where benefits such as water regulation, drought
resistance, and soil erosion control are critical,
the incomplete data on these services, limits
their effective inclusion in restoration planning
(Almagro et al. 2013, de Groot et al. 2022). This
data scarcity is a widespread issue in ecosystem
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and landscape restoration. However, two key ini-
tiatives— the TEER-initiative (The Economics of
Ecosystem Restoration, led by FAO, CIFOR, and
WRI) and the Ecosystem Services Valuation Da-
tabase—may help address this issue (de Groot
et al. 2022). Nevertheless, there still remains a
pressing need for more accessible and reliable
data to inform land management decisions.
Further research is needed to develop in-
novative methodologies, improve data collection
and valuation practices, and strengthen the in-
tegration of policy recommendations into ES re-
search. Addressing these gaps is essential for
advancing sustainable land management prac-
tices and ensuring the effective delivery of eco-
system services in the face of land degradation.

Knowledge Gap 3

What are the historical, current, and future so-
cial and economic interactions with Land Deg-
radation?

Land degradation presents significant chal-
lenges across multiple domains, including social
and economic spheres. Understanding the intri-
cate connections between land degradation, so-
cial vulnerability and structure, along with finan-
cial implications is critical to addressing its causes
and impacts effectively. Although substantial
research has been conducted on these topics,
several knowledge gaps persist, particularly re-
garding the historical, current, and future so-
cio-economic interactions with land degradation
within the European Union (EU) (The Economics
of Land Degradation 2015). Below, we separate
the social and economic components of land deg-
radation to highlight their respective limitations.

Social Impacts of Land Degradation

Land degradation directly affects communities,
particularly in regions with intensive agricultural
practices or vulnerable ecosystems. The social
aspects of land degradation have been studied
extensively, but several critical knowledge gaps
remain. First, there is a need to understand the
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long-term societal consequences of land deg-
radation (Johnson et al. 2024). Research has
examined the immediate effects on agricultural
productivity and rural livelihoods, but the total
social cost, including health, migration, unem-
ployment, inequality and displacement, is still
poorly understood (Johnson et al. 2024). A key
aspect is that land degradation can lead to social
vulnerability by eroding community resilience
and forcing vulnerable populations to migrate.
Yet, the impacts of this environmental migration
remain underexplored, with most studies focus-
ing on climate change migration (IPBES 2018).

Second, there is a gap in understanding
the role of indigenous and local knowledge in
coping with land degradation. The integration
of these traditional insights into modern land
management practices could provide valuable
solutions for more sustainable land recovery. In-
digenous practices often emphasize ecosystem
health and holistic land exploitation, offering an
important counterpoint to contemporary meth-
ods of land degradation mitigation (Johnson et
al. 2024). Yet, the validation and systematic in-
tegration of such knowledge remain insufficient
and often overlooked in favor of purely scientific
or technological solutions (Teuber et al. 2022).

Moreover, the socio-economic benefits
of suitable land management practices have
not been fully explored (examples were also
discussed in the Knowledge Gap 1). Effective
land restoration practices can yield long-term
socio-economic returns, including improved
food security, rural employment, and ecosys-
tem services (Lobmann et al. 2022 ). However,
a comprehensive understanding of how these
practices contribute to community well-being,
particularly in the context of varying socio-eco-
nomic conditions across the EU, remains chal-
lenging (Visser et al. 2019, Amin et al. 2020, Lob-
mann et al. 2022). There is a need for integrated
research to assess these benefits within diverse
socio-economic contexts to facilitate the design
of context-specific solutions.

Finally, the importance of participatory ap-
proaches in addressing land degradation has
been recognized, particularly in the framework
of the Agricultural Knowledge and Innovation
System (AKIS), which fosters joint learning and
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co-creation (Knierim et al. 2015, Lobmann et al.
2022). Participatory approaches to data gath-
ering and research, which engage farmers, am-
ateur soil scientists, community members, or
school students, have gained attention for both
advancing scientific progress and achieving so-
cial and educational outcomes (Lobmann et al.
2022). As defined by von Korff et al. 2012, ,par-
ticipatory” refers to the involvement of not only
trained professionals but also a broader range
of interested parties, including non-experts and
local community members. However, there is a
lack of empirical evidence on the effectiveness
of these participatory approaches, which limits
their potential to generate actionable insights
(Hallinger and Nguyen 2020). Future research
should explore the value of participatory meth-
ods in creating more inclusive, adaptive, and
sustainable land management practices.

Economic Impacts of Land
Degradation

According to the study by Panagos et al. 2018,
12 million hectares of agricultural land in the EU
that are affected by severe soil erosion by water
annually lose around 0.43% of their crop produc-
tivity, which translates to a cost of approximate-
ly €1.25 billion. The agricultural sector incurs a
direct cost of €300 million, while the GDP loss
amounts to €155 million. Italy is identified as the
country with the highest economic impact, while
most Northern and Central European countries
experience only marginal losses Panagos et al.
2018. More recent and relevant financial infor-
mation can be found in the State of Soils in Eu-
rope Report (European Comission and European
Environment Agency 2024).

As seen from an economic perspective, the
costs of land degradation and the financial via-
bility of soil protection measures are critical ar-
eas where some knowledge gaps and limitations
still exist. More precisely, land degradation has
significant economic consequences, as in agri-
culture, which is often one of the most directly
affected sectors. Despite this, there remains a
lack of comprehensive economic assessments
of soil protection practices, especially at the
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farm level (Tepes et al. 2021). For example, many
existing studies on the cost-effectiveness of soil
protection measures rely on secondary data and
assume that the benefits of these practices con-
sistently exceed their costs. However, this as-
sumption is frequently challenged by evidence
that indicates such benefits do not always out-
weigh the costs, especially in heterogeneous ar-
eas (Tim Chamen et al. 2015, Tepes et al. 2021).

Another major limitation in economic re-
search on land degradation is the lack of consis-
tent and comparable data. Much of the existing
literature focuses on specific regions, using var-
ied methodologies, and often excludes non-mon-
etary considerations, which leads to gaps in un-
derstanding the full economic value of soil health
(Kenter et al. 2016, Lébmann et al. 2022). For
instance, many studies omit the broader eco-
nomic implications of off-site impacts, such as
soil erosion, which can have far-reaching effects
on local economies, beyond just the immediate
agricultural sector. These impacts are difficult
to quantify and remain underexplored in many
studies (Kubiszewski et al. 2013, Romanazzi et
al. 2024).

Furthermore, economic models that as-
sess the costs and benefits of land degradation
and remediation often rely on overly simplified
assumptions, such as the uniform distribution
of soil degradation across different agricultural
systems. These assumptions can lead to inac-
curate estimations of the actual costs of land
degradation. For example, studies conducted in
regions like the UK and Germany suggest that
economic outcomes can vary significantly de-
pending on local agro-economic conditions,
meaning that cost analyses should be conduct-
ed at more localized scales (Intergovernmental
Panel on Climate Change 2019).

While progress has been made in under-
standing the social and economic dimensions
of land degradation, significant gaps remain in
both areas. From a social perspective, more re-
search is needed on the long-term impacts of
land degradation on communities, including mi-
gration, vulnerability, and the role of indigenous
knowledge. A more integrated and participatory
approach to land management is necessary to
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address the complex and context-specific na-
ture of land degradation.

Economically, there is a need for more ro-
bust, site-specific studies on the costs and
benefits of soil protection and remediation mea-
sures. Economic assessments should move be-
yond generalized assumptions and account for
the diverse agro-economic conditions that influ-
ence land management decisions, while also ac-
counting for off-site effects. Additionally, future
research should explore innovative policy instru-
ments that integrate both financial and social as-
pects of land degradation.

Ultimately, addressing these knowledge
gaps will contribute to a more comprehensive
understanding of land degradation, enabling
the development of more effective policies and
interventions. As the EU works toward its land
degradation neutrality targets, these insights will
be crucial in ensuring that both social and eco-
nomic factors are accounted for in the sustain-
able management of land resources.

3.2 Prioritized Knowledge
Gaps

As far as the remaining Prioritized Knowledge
Gaps are concerned, they can be found below:

Knowledge Gap 4

Lack of comprehensive understanding of Land
Degradation (effects and drivers)

There is a lack of comprehensive and de-
tailed understanding of the causes, processes,
and impacts of Land Degradation across differ-
ent regions and soil types (Reynolds et al. 2007,
Saljnikov et al. 2022, Daliakopoulos et al. 2016,
FAO 2015, Ravi et al. 2010, Xie et al. 2020). Some
relative examples refer to the difficulties that
arise due to the diversity of perspectives on land
degradation, limited studies regarding soil com-
paction, and complexities in revealing the intri-
cate nature of interactions between Soil Organic
Matter (SOM) fractions (Gianoli et al. 2023). More
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precisely, despite the existence of numerous case
studies at a European and global level, applying
such findings on a continental scale remains a
challenge, as understanding the precise dynamics
of driver interactions and their plausible impacts
on specific sites requires detailed case-specific
examination (Gianoli et al. 2023). Moreover, while
there are some studies offering estimates of the
areas affected by compaction, there are only a
handful of field studies that actively monitor the
impacts of soil compaction and the subsequent
alterations in the soil structure and functions after
a compaction event (Keller et al. 2017, Saljnikov et
al. 2022). As for the gaps in understanding SOM
fractions interactions, challenges can be found
in understanding the relationships between abo-
veground and belowground biota (Orgiazzi and
Panagos 2018), and the impact of drivers on the
accumulation/decomposition of SOM (Jia et al.
2019). Consequently, more research is needed to
fill these knowledge gaps and develop a better
understanding of the complexities involved and
the interlinkages between various drivers and
processes concerning Land Degradation.

Knowledge Gap 5

How can we enhance regional planning regard-
ing reducing Land Degradation?

One of the key challenges in enhancing re-
gional planning to reduce land degradation is the
fragmented nature of policies and the lack of
coordination among various stakeholders (Saik
et al. 2024). Research indicates that a unified
political environment is essential for integrating
LDN objectives across governance levels—from
local to national authorities (Kust et al. 2017, Saik
et al. 2024). Another limitation is the insufficient
data on land resources and soil, which impedes
accurate assessments of land degradation risks
and restoration potential (Oliveira et al. 2018).
To address these gaps, there is a need for im-
proved data collection and monitoring mecha-
nisms. Current research suggests that spatial
planning tools and models, which assess land
degradation risks and track restoration prog-
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ress, could help align LDN efforts with broader
climate resilience and economic development
goals (Briassoulis 2019, UNCCD/Science-Policy
Interface 2023). These tools are essential for
developing integrated strategies that promote
sustainable land management. Additionally, the
integration of ecosystem services into land-use
planning remains a significant challenge (Oliveira
et al. 2018). While studies highlight the impor-
tance of incorporating ecosystem services into
land management (Zhang et al. 2022), methods
for assessing and quantifying these services
in the context of LDN are still underdeveloped.
Ecosystem services, such as soil fertility, water
regulation, and carbon sequestration, must be
accounted for in regional planning to ensure the
sustainability of land-use decisions. As noted by
Cowie et al. 2018, achieving LDN requires care-
ful consideration of the balance between land
degradation and restoration, which depends on
reliable indicators for monitoring changes in land
condition. Furthermore, a central knowledge gap
in the current discourse is the lack of attention
given to land degradation in strategic spatial
planning (Oliveira et al. 2018). Although environ-
mental issues are often acknowledged in land-
use planning, few studies address how strategic
spatial planning can effectively contribute to the
reduction of land degradation, particularly in ur-
ban regions (Gomiero 2016, Albrechts 2016). As
highlighted by recent reviews, strategic spatial
planning has been increasingly recognized as an
important way for managing land transformation,
yet its potential to mitigate land degradation has
not been fully explored (Briassoulis 2019, Cowie
et al. 2019). In this context, there is a need to ex-
pand the role of strategic spatial planning in ad-
dressing land degradation. For regional planning
to effectively contribute to land degradation re-
duction, it must move beyond the general recog-
nition of environmental concerns and implement
concrete strategies to protect and restore land
(Oliveira et al. 2018). This requires the inclusion
of all sectors of society, from land managers to
local communities, in the planning process. Fur-
thermore, it is essential that spatial plans are
developed with clear objectives for sustainable
land use and LDN implementation.
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Knowledge Gap 6

Lack of Land Degradation data and limited
monitoring at different scales

Comprehensive data on land degradation
(LD) is essential for understanding its causes,
extent, and impacts, yet significant gaps exist
across various spatial and temporal scales. With-
out accurate, high-resolution data on land and
soil health, the development of targeted solutions
and the implementation of effective policies re-
main a challenge (European Commission 2019a,
European Commission 2020a, Saljnikov et al.
2022, United Nations to Combat Desertification
2016, Lunik 2022, Ontel et al. 2023). One notable
example is highlighted by Panagos et al. 2020,
where the uncertainty in soil erosion estimates
arises from the lack of georeferenced data, spe-
cifically data on crop types and soil management
practices implemented annually. This data gap
makes it difficult to accurately assess the spatial
distribution of land degradation and complicates
the monitoring of restoration efforts.

Another example study that provides a flex-
ible and valid starting point for assessing land
degradation is not without its challenges (Manna
et al. 2024). In particular, the study of Manna et
al. 2024 highlighted that one of the significant
issues is the difficulty of obtaining up-to-date
databases for land cover and soil organic carbon
(SOC) data. The lack of timely data can result
in the underestimation of critical land degrada-
tion indicators, particularly in areas with irregular
spatial distributions. These variations can often
only be detected through in situ sampling or the
use of very high-resolution multispectral images.

In addition to the technical limitations in data
collection and analysis, there are conceptual
challenges related to the measurement and clas-
sification of land degradation. A recurring issue
in land degradation studies is the lack of clear
differentiation between processes and drivers,
cause and effect, as well as hazard and vulner-
ability (von Keyserlingk et al. 2023). This ambi-
guity complicates the development of quantita-
tive risk projections and impedes the connection
between research findings and decision-making
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processes (Akbari et al. 2016 Martinez-Valder-
rama et al. 2020b, Martinez-Valderrama et al.
2020a).

In many studies, land degradation is either
treated as a permanent condition or as a dis-
crete hazard, with limited consideration of its
temporal dynamics. While some studies (Ma-
soudi and Jokar 2018, Martinez-Valderrama et
al. 2020) include probabilistic elements of risk,
such as scenario analyses based on state and
transition models, such approaches are not uni-
versally adopted (von Keyserlingk et al. 2023).
The absence of a consistent framework for inte-
grating temporal dynamics into land degradation
assessments further limits the ability to predict
future degradation trends and develop adaptive
management strategies. Incorporating a more
nuanced understanding of the processes, driv-
ers, and risks associated with land degradation
is essential to inform more effective policymak-
ing and land management practices.

In conclusion, accurate data plays a pivot-
al role in several key processes related to land
degradation, including monitoring and assessing
land health, designing evidence-based policies,
securing funding, and fostering collaboration
among stakeholders. These processes rely on
the availability of high-quality, comprehensive
datasets. Therefore, it is crucial to prioritize data
collection, the digital transformation of data sys-
tems, and dedicated research efforts aimed at
addressing land degradation through enhanced
research and innovation (R&l) initiatives.

Knowledge Gap 7

How do we support the farmers to make the
turning point towards sustainable land and soil
management soil practices?

Farmers often use management practic-
es like ploughing, believing they will increase
crop production. However, these practices can
degrade soil and reduce yields in the long run
(Quinton et al. 2022). Although several farmers
recognize the challenges they face, they often
lack the knowledge, means and/or motivation to
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adopt and implement sustainable practices and
make the turning point towards sustainable soil
practices. Tillage, common in crop production
across 15.5 million km? of soil at a global scale,
has been shown to cause soil thinning, reduce
yields, and increase erosion, especially on slop-
ing land (Quinton et al. 2022). Over time, mech-
anized farming accelerates this erosion, further
diminishing productivity. To counteract these ef-
fects, adopting non-tillage practices is essential.

In addition, volatile agricultural markets can
make it difficult for farmers to plan for the future.
Access to accurate market data can help farmers
make better decisions and improve profitability.

To support the transition to sustainable
practices, farmers need better knowledge,
training, funding and access to tools, such as
reliable business models, that demonstrate the
benefits of non-tillage, appropriate fertilization
practices, and other sustainable farming meth-
ods. Consumers, on the other hand, need infor-
mation (such as those recently developed for
certified biodiversity-friendly practices: https://
www.olivaresvivos.com/en/certification/) in or-
der to compensate farmers and produce a bet-
ter market value to support such practices. By
addressing both the knowledge gaps and eco-
nomic challenges, farmers can be empowered to
adopt sustainable land management, benefiting
soil health in the long term.

Utilizing the Voluntary Carbon
Market to Enhance Liquidity in the
Agri-Food Value Chain

One compelling approach to enhancing liquidity in
the agri-food value chain is through the voluntary
carbon market, which offers a financial incentive
for farmers who adopt regenerative farming prac-
tices and provide ecosystem services to society.
By sequestering carbon in soil and adopting na-
ture-based solutions (NbS), farmers can gener-
ate high-quality carbon credits that can be sold
in the market (Stofferis et al. 2025). As described
in the Taskforce on Nature Markets (https://www.
naturemarkets.net/), in addition to carbon credits,
other types of credits are emerging, such as bio-
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diversity credits and resilience credits. While car-
bon and resilience credits aim to bolster systems'
ability to cope with climate impacts, biodiversity
credits are specifically designed to protect and
enhance biodiversity. These credits can comple-
ment each other within broader environmental
and sustainability strategies. Resilience credits, in
particular, monetize the benefits of risk reduction.
They present a promising solution by providing a
financial mechanism for investing in practices that
enhance ecosystem resilience. The integration of
resilience credits with insurance models could sig-
nificantly boost global investments in NbS, offer-
ing a synergistic approach that combines financial
risk management with ecological sustainability
(https://www.nature.org/). Both resilience and na-
ture-based carbon credits can play a crucial role
in supporting adaptive management strategies in
agriculture, helping farmers transition to sustain-
able practices while maintaining financial stabili-
ty (Stofferis et al. 2025). Biodiversity credits, on
the other hand, focus on conserving and restoring
natural habitats, ensuring long-term ecological
health. At this point in time, the voluntary market
for carbon credits remains the most liquid. This
liquidity provides farmers with an immediate fi-
nancial return for their efforts in carbon seques-
tration, making it an attractive option. However,
as markets for resilience and biodiversity credits
develop, they too could offer substantial oppor-
tunities for farmers to gain financial rewards for
their contributions to environmental health (Stof-
feris et al. 2025). Overall, leveraging these various
credit systems can create a more sustainable and
economically viable agricultural sector. By aligning
financial incentives with environmental steward-
ship, we can ensure that farmers are rewarded for
their role in enhancing ecosystem services, con-
tributing to greater resilience and biodiversity, and
ultimately supporting global sustainability goals.

Knowledge Gap 8

Limited mitigation Land Degradation strategies

There is a need for further research to opti-
mize soil management practices, strategies and
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techniques that can help mitigate and prevent
Land Degradation (Vanino et al. 2023). More em-
phasis should be placed on developing innova-
tive and sustainable soil management practices
that are suitable for different regions, scales and
cases (European Commission 2020a, FAO 2015).
In particular, there is a pressing demand for
the establishment of systematic and validated
methodologies to select/develop practices that
will enhance our comprehension and facilitate
the advancement and adoption of appropriate
Sustainable Land Management (SLM) practices
to diverse conditions (Giger et al. 2018, Gonza-
lez-Roglich et al. 2019, Liniger et al. 2019, Hare-
geweyn et al. 2023). In this regard, Liniger et al.
2019), highlighted the ,insufficient attention to
monitoring” at the field level and identified the
Linvolvement of land users” in SLM and monitor-
ing tasks as ongoing challenges. Demonstrating
both on- and off-site impacts, as well as assess-
ing both monetary and non-monetary ,costs and
benefits of SLM” are essential to provide evi-
dence for informed decision-making (Giger et al.
2018, Schwilch et al. 2014). Moreover, dissemi-
nation and training activities for the farmers are
essential to support the application of sustain-
able soil management practices. More relevant
studies are also discussed in Section 3.1 (Knowl-
edge Gap 1).

Knowledge Gap 9

How do we educate and inform the population
more effectively about the value of natural re-
sources, including soil?

Effective education and engagement of the
public on the value of natural resources, such as
soil, is essential for achieving sustainable land
management and environmental conservation.
A key aspect of fostering this awareness is pro-
moting meaningful dialogue between science,
policy, and society. A notable example is the re-
cent developments within the European Union
(EU) that have highlighted the growing momen-
tum involving citizens in biodiversity policy de-
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velopment. Initiatives like citizen science have
been leveraged to encourage public participa-
tion, allowing citizens to contribute to knowledge
production. At the EU level, online mechanisms
have been employed to spread information and
promote public deliberation, although participa-
tion remains inconsistent (Varumo et al. 2020).
To strengthen this engagement, tools such as
online science cafés have been explored in the
study of Varumo et al. 2020, to facilitate dialogue
between scientific communities, policymakers,
and the public. These platforms are particularly
valuable when addressing complex, multi-scalar
challenges like soil degradation and natural re-
source management. Findings from research on
such dialogues stress the importance of iterative
communication processes that allow for contin-
uous feedback and engagement (Varumo et al.
2020). This approach ensures that discussions
are inclusive and that a diverse range of voices is
heard, ultimately helping to inform and influence
policy.

Moreover, to effectively address the environ-
mental crisis, it is evident that neither traditional
methods of education nor business-as-usual ap-
proaches are sufficient (Wals and Benavot 2017).
Education for sustainability must be expansive
and collaborative, involving multiple sectors, ac-
tors, and levels of governance. Schools and edu-
cational institutions must be integrated into their
communities to influence not just students, but
also decision-makers in government and busi-
ness. This broader approach is critical for ensur-
ing that long-term environmental concerns, such
as soil health and natural resource preservation,
are incorporated into decisions at all levels (Wals
and Benavot 2017).

In summary, educating and informing the
population about the value of natural resources
like soil requires a shift toward more inclusive,
participatory models of engagement. By incorpo-
rating iterative dialogues, fostering collaboration
across sectors, and ensuring that sustainabili-
ty education is embedded within communities,
we can cultivate a more informed and proactive
society that supports policies for the protection
and sustainable use of natural resources.

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Melpomeni Zoka et al.: Outlook on the knowledge gaps to reduce land degradation in Europe

Knowledge Gap 10

Is the concept of Land Degradation Neutrality
enough to ensure healthy land and soils in the
future?

Land degradation remains a significant EU
and global challenge, with far-reaching implica-
tions for agricultural productivity, ecosystem ser-
vices, biodiversity, and human well-being. As soil
health continues to decline, effective strategies
are essential to address this pressing issue. One
such strategy that has gained increasing atten-
tion is the concept of Land Degradation Neutral-
ity (LDN), which has gradually materialized into
concrete guidelines, thanks to the advice of the
Science-Policy Interface of the UNCCD (United
Nations Convention to Combat Desertification
2017, Cowie et al. 2018, Chasek et al. 2019). LDN
promotes a balanced approach to land manage-
ment, focusing on maintaining or restoring land
productivity by integrating both degradation
prevention and restoration efforts (Feng et al.
2022). By incorporating ecosystem services into
land-use planning, LDN aims to safeguard nat-
ural capital and ensure long-term sustainability
(Mikhailova et al. 2024). However, there is still a
long way to go before LDN becomes an effective
instrument. The proposal involves developing a
plan that integrates the various sectoral plans
already in place within each country, taking into
account the National Irrigation Plans, the Forest-
ry Plans, the Water Management Plans, the Stra-
tegic Plan for the Common Agricultural Policy,
and several sectoral plans currently implement-
ed at different administrative levels. Moreover, it
is crucial to evaluate whether the concept of LDN
alone is sufficient to ensure the health of land
and soils in the future (Mikhailova et al. 2024).

For example, LDN analysis should not only
be accomplished in an overall approach but also
disaggregated by administrative units and LD
type (e.g., agriculture) (Mikhailova et al. 2024).
An overall LDN at the country or region scale can
falsely imply overall LDN when there are ongoing
LD increases in different types of LD (Mikhailova
et al. 2024).

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

In addition, substantial challenges remain in
translating LDN concepts into actionable strate-
gies that effectively reduce land degradation at
local and regional scales. One key challenge is
the incorporation of LDN into land-use practic-
es, particularly in regions with fragmented land
ownership and insecure land tenure systems
(Feng et al. 2022).

In Eastern Europe and Central Asia, for
example, land reforms in the 1990s aimed at
transitioning from centrally planned economies
to market-driven systems (Sutton et al. 2016,
FAO 2021). These reforms involved land resti-
tution and distribution, resulting in a shift from
large collective farms to individual family farms.
While many of these countries have formalized
land rights in registries, land fragmentation re-
mains an issue in several European countries,
often hindering agricultural productivity and
contributing to unsustainable land manage-
ment practices (Hartvigsen and Gorgan 2020).
This fragmentation and insecure land tenure,
particularly for women and girls, further exac-
erbate challenges related to land degradation
(FAO 2021).

Furthermore, LDN must be integrated into
broader land-use policies that consider both
environmental and socio-economic factors to
effectively ensure healthy land and soil for the
future (Mikhailova et al. 2024). This integration
could include estimates of the social costs of
GHG emissions based on the concept of avoided
vs. realized social costs (Mikhailova et al. 2024)

In conclusion, while the concept of Land
Degradation Neutrality offers a promising frame-
work for addressing land degradation, it is not
sufficient by itself to guarantee healthy land and
soil. Achieving sustainable land management
requires a multi-faceted approach that includes
addressing land tenure insecurity, land fragmen-
tation, and incorporating social and financial
dimensions into land-use planning. Moreover,
continued research, data collection, systematic
monitoring, and policy development are neces-
sary to close the knowledge gaps and improve
the effectiveness of LDN in combating land deg-
radation globally.
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3.3 Overview

The subsection 3.3 displays three tables and one
list of Knowledge Gaps. More precisely, Table 2
represents an overview of all identified Knowl-
edge Gaps, Table 3 the Actions, and Table 4 the
Bottlenecks, which collectively form the founda-
tional elements of the Roadmap.

Lastly, a slightly more extensive description
of the Knowledge Gaps, starting from number
11 onwards, is provided in the following para-
graphs. These gaps, while not ranked among the
top priorities, represent additional critical areas
that require attention and further exploration to
address Land Degradation effectively.

e Current and future climate change inter-
actions with Land Degradation in the EU:
Land Degradation and climate change are
interconnected processes. However, there is
still limited understanding of the exact inter-
actions and feedback mechanisms between
Land Degradation and climate change (Eu-
ropean Commission 2015IPCC (Inter-Gov-
ernmental Panel on Climate Change) 2001In-
tergovernmental Panel on Climate Change
2019, Odebiri et al. 2023). An example of
some related knowledge gaps can be found
in the following questions (Reed and String-
er 2016): Which variables play a crucial role
in monitoring the interactions and feedback
loops between climate change and land deg-
radation? What role do climatic factors play
in either mitigating or accelerating land deg-
radation, and how can emerging opportuni-
ties be harnessed to achieve Land Degrada-
tion Neutrality (LDN) within the framework
of a changing climate? What is the impact of
Land Degradation on Climate? Furthermore,
there is a strong focus on climate change
on climate change impacts almost solely
on agricultural crops and food production,
overlooking livestock, forest farming and
pests, as well as disregarding components
of the food system and security (Farooq et
al. 2022). As such, research is needed to as-
sess the impacts of climate change on LD,
as well as the potential of degraded land to
contribute to climate change.
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e Current and future biodiversity loss in-

teractions with Land Degradation in the
EU: Land Degradation and biodiversity loss
are interlinked processes. Despite this fact,
there are several limitations in understand-
ing the causal relationships and feedback
loops between biodiversity loss and land
degradation. Examples of relevant knowl-
edge gaps can be found in the effects of
climate adaptation options on soil‘s role as
a habitat and genetic reservoir. More pre-
cisely, according to the study of Hamidov et
al. 2018, among the 20 EU case studies that
they examined regarding the impacts of cli-
mate change adaption options on soil func-
tions, solely a few consider the impacts on
soil biodiversity. The evident neglect of soil
biodiversity issues in the majority of case
studies contradicts the growing recognition
of the crucial functional role of soil organ-
isms in soil processes (Cluzeau et al. 2012).
This represents a significant knowledge gap
that requires attention in future research
endeavors (Hamidov et al. 2018). Addi-
tionally, there is a need for standardized,
comprehensive approaches for measuring
the compaction, diversity, and function of
soil biota (Saljnikov et al. 2022, Thiele et al.
2020).

Absence of well-established and inter-
linked policies and legislations concern-
ing Land Degradation and its components:
Lack of well-established and/or Land Deg-
radation-related policy frameworks leads
to unclear guidelines for soil management,
resulting in a lack of standardisation in R&l
methodologies (European  Environment
Agency 2019, Guerra et al. 2016). While this
can be mainly seen as a bottleneck, it can
also be characterised as a lack of knowl-
edge when interlinkages between drivers
affect the process of establishing clear pol-
icies. A relevant example refers to the study
of Paleari 2017, where it was noted that de-
spite the existence of several policies to ad-
dress and regulate some soil threats, oth-
ers, such as salinization, receive only limited
consideration and lack a comprehensive
framework for soil protection.
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 Knowledge gaps on the quantification

of off-site Land Degradation effects and
costs: The contemporary understanding of
land degradation is marked by a significant
gap in knowledge, particularly concerning the
quantification of off-site effects and costs as-
sociated with Land Degradation (Boardman
et al. 2019, Saljnikov et al. 2022). This refers
to the impacts that extend beyond the im-
mediate area of degradation and affect sur-
rounding regions or ecosystems. The existing
knowledge deficit in this specific aspect un-
derscores the need for up-to-date research
efforts to address and quantify these off-site
effects and costs comprehensively.
Insufficient knowledge for accessing
funds related to Land Degradation and
soil projects and initiatives: Insufficient
knowledge to navigate the administrative
procedures for accessing funds related
to Land Degradation and soils (European
Commission 2021c, EU Soil Observatory
2019). Are Land Degradation related funds
and efforts sufficient to stop it?

Land Degradation models’ limitations, un-
certainties and capabilities: Despite the
existence of several models and method-
ologies to assess the Land Degradation
status or components, there is a limitation
in understanding their capabilities and un-
certainties due to the lack of validation data
and long-term measurements (Hessel et
al. 2014 Saljnikov et al. 2022, Aouragh et al.
2023, European Commission 2020a, Li et al.
2021, Pravalie et al. 2021, Xu et al. 2023).
Lack of sufficient understanding of urban
soils inrelation to Land Degradation: As in-
dicated in the Soil Mission Implementation
Plan (European Commission 2019a), the
scope of land/soil degradation knowledge
predominantly revolves around agricultural
soils, with limited attention given to other
land uses. It is necessary to bridge this gap
and enhance our capabilities for supporting
and rejuvenating land and soil health, both
in urban and rural areas.

Difficulties in understanding the drivers of
individual and collective decisions associ-
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ing the drivers behind individual and collec-
tive decisions is crucial for addressing land
degradation effectively. Individual or col-
lective decisions made by land users, such
as farmers or landowners, play a significant
role in shaping land management practic-
es (Boardman and Evans 2019, European
Commission 2019a, EU Soil Observatory
2019). Despite advancements in research,
there are still difficulties in understanding
individuals’ decisions as decision-making is
dynamic (it evolves over time in response to
changing conditions), is represented by an
inherent diversity (decision-making hetero-
geneity) and there is a lack of data to cap-
ture the behavioural factors (EJP Soil 2018).
Lack of understanding of subsurface pro-
cesses related to Land Degradation: The
insufficient comprehension of subsurface
processes associated with land/soil degra-
dation underscores a notable gap in current
research and data acquisition efforts. In
comparison to topsoil, subsurface process-
es have not received a proportionate level
of scrutiny. This incompatibility is further
exacerbated by the fact that a predomi-
nant portion of existing Land Degradation
and soil datasets (e.g. Soil Organic Carbon),
as well as research projects and initiatives,
predominantly concentrates on the topsoil
layer (European Commission 2019a).

How can we sufficiently control water re-
sources to avoid provoking issues in soils?
How could the water directive be adjusted?
Water and land degradation are intercon-
nected, with one often exacerbating the
other. For example, deforestation can lead
to increased soil erosion, which in turn re-
duces water infiltration and increases run-
off, further accelerating land degradation
(Borrelli et al. 2020). Water plays a signif-
icant role in land degradation, both as a
cause and a consequence, as highlighted
by the following key insights:

Water as a cause of land degradation:

Erosion: Water erosion is a major contribu-

ated with Land Degradation: Understand-  tor to land degradation, particularly in areas with

SOLO Outlook 2025 27
DOI: 10.5281/zenodo.17430539



Melpomeni Zoka et al.: Outlook on the knowledge gaps to reduce land degradation in Europe

heavy rainfall, steep slopes, or poor vegetation
cover. The force of moving water dislodges and
carries away soil particles, leading to the loss of
fertile topsoil and the formation of gullies and ra-
vines (Garcia-Ruiz et al. 2015).

Salinization: In arid and semi-arid regions,
excessive irrigation can lead to the buildup of
salts in the soil, making it unsuitable for plant
growth. This process, known as salinization, is
exacerbated by poor drainage and the use of sa-
line water for irrigation (Mohanavelu et al. 2021).

Waterlogging: Over-irrigation or poor drain-
age can lead to waterlogging, where the soil
becomes saturated with water, depriving plant
roots of oxygen and causing their death (Ritze-
ma et al. 2008).

Flooding: Floods can cause significant land
degradation by eroding soil, depositing sedi-
ments, and damaging infrastructure (IPCC 2021).

Water as a consequence of land degradation:

Reduced water availability: Land degrada-
tion reduces the soil‘s ability to absorb and retain
water, leading to decreased water availability for
plants and humans (Lal 2015).

Increased runoff: Degraded land is less able
to absorb rainfall, leading to increased runoff and
a higher risk of floods (Montanarella et al. 2016).

Contamination of water resources: Land deg-
radation can contaminate water resources with
sediments, nutrients, and pesticides, harming
aquatic ecosystems and human health (United Na-
tions Convention to Combat Desertification 2022).

Despite the evident interlinkages between
the two natural resources, current regulatory
frameworks and policies often fail to address
this nexus to and thence bridge soil and water
resources management, perpetuating fragment-
ed governance. An example is how disjointed
policies fail to address feedback loops like salini-
zation from poor irrigation practices.

e How to ensure land restoration is an inte-
gral part of social structures and actions
at all scales? Engaging local communities
and tapping into their traditional knowledge
and innovations plays a vital role in achiev-
ing effective conservation endeavors (Eco-
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nomics of Land Degradation 2016). This
principle aligns with the Aichi Biodiversity
Target 8, which underscores the impor-
tance of respecting and leveraging tradi-
tional knowledge, innovations, and prac-
tices of indigenous people while involving
local communities in conservation efforts
(Convention of Biological Diversity (CBD)
2014). Their active participation not only
ensures that they benefit from and are re-
warded for their conservation efforts but
also contributes to addressing land deg-
radation. However, the limited capacity
of local communities to address technical
aspects of natural resource management
poses a significant constraint that under-
mines SLM (Economics of Land Degrada-
tion 2016). More specifically, a challenge
arises when attempting to integrate land
restoration into social structures that drive
social actions, particularly in the context of
indigenous knowledge (Santini and Mique-
lajauregui 2022). In this light, despite the
existence of studies exploring the benefits
of indigenous knowledge in enhancing land
restoration, involving local communities in
restoration activities does not consistently
result in successful ecosystem restoration
or benefits for those communities (Tellez
et al. 2019). Moreover, the social aspects
related to land restoration are not thor-
oughly explored and there is not sufficient
participation from local rural communities
(Reyes-Garcia et al. 2018, Van Noordwijk
et al. 2020, Wehi and Lord 2017). There is
still much work to be done in identifying the
factors that contribute to successful resto-
ration efforts that also bring advantages to
local communities.

How to build commons-based land gov-
ernance systems? Contemplating land-
based commons allows us to delve into
the intricate dynamics of how individuals,
communities, and humanity navigate inter-
connected natural and social environments
(Giraud et al. 2016). From there, we can as-
sess which organizational levels hold the
greatest significance in understanding the
interaction among customary, informal, and
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formal rules and practices. By incorporating
these insights, we can craft adaptive ap-
proaches to natural resources management
and delve into how territorial development
strategies and organizational structures
might impact the future of highly coveted
land, such as arable and irrigable areas,
as well as vulnerable territories like graz-
ing and wildlife zones, forests, mountain
tops, sacred sites, lakes and rivers - areas
often targeted for land grabbing (Interna-
tional Land Coalition 2016). However, there
are still existing challenges in establishing
transparent and effective land governance
systems (Giraud et al. 2016).

How do we shift from the current trend of
intensification of agricultural production
and overexploitation to land conservation?
More precisely, during the last decades, the
EU has placed increasing demands on es-
sential resources like food and fiber, neces-
sitating a substantial boost in agricultural
production. Modern agricultural technol-
ogies, such as machinery, fertilizers, and
advanced irrigation, are crucial to meet this
demand. However, large-scale construction
and environmental challenges like climate
change also stress European resources,
particularly agricultural land (F.A.O. 2015).
Soil, a non-renewable resource formed over
millennia, is central to food, energy, and wa-
ter security, as it supports over 95% of glob-
al food production (Saljnikov et al. 2022).
Yet, the pursuit of higher agricultural out-
put through technology can accelerate soil
degradation to a critical point where further
advancements can't compensate for inher-
ent soil limitations (Saljnikov et al. 2022).
How can we support a land workers-led
research on Land Degradation and how
can we integrate the outputs of such en-
deavors? Citizen science is an untapped
resource for European soil and land re-
search. In this light, the recent years the EU
has been investing in a cornucopia of ac-
tions and projects to engage citizens in soil
science and support them to preserve soil
health (Panagos et al. 2024). Such actions
and projects refer to but are not limited to
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the Soil funDamentals project, the UKSO
Soil Observatory, the Grow observatory,
the ECHO project, the Soil Plastics moni-
toring application, and the Heavy Metal City
Zen project. Despite the significance and
achievements of these efforts, there is a
need to better communicate soil science to
the plausible citizen scientists and a need
to integrate the outputs of these projects
(Wadoux and McBratney 2023).

How can we overcome the challenges in
the land regulatory framework introduced
by land ownerships? As land is not a com-
mon good.

Lack of an early warning system related to
soil degradation dynamics, e.g. in case of
a landslide (Dang et al. 2025, Yarahmadi et
al. 2024).

Lack of knowledge on how to address the
EU's competitiveness challenges in the
global market. These challenges include,
but are not limited to, knowledge gaps in
closing the European innovation gap—par-
ticularly in advancing the technology sec-
tor—and bridging the EU’s financial short-
falls, as described in the Draghi report
(European Commission 2024).

Lack of understanding Nature Based Solu-
tions: Not well studied yet (Dunlop et al.
2024).

Is it possible to identify sets of adapta-
tion options that complement each other,
mitigating trade-offs and fostering mutu-
ally beneficial outcomes for both climate
change and land degradation (Reed and
Stringer 2016)?

At what spatial scale do Land Degradation
vulnerability maps offer the most valuable
insights to decision-makers while main-
taining a rich level of information and detail
(Reed and Stringer 2016)?

What resources are required for studying
Land Degradation, and how do the monitor-
ing (action) costs compare with the costs
of not monitoring (inaction) across short,
medium, and long time frames (Reed and
Stringer 2016)?

How do we pinpoint the thresholds, both
in terms of time and space, at which Land
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Degradation adaptive practices and tech-
nologies may turn counterproductive, war-
ranting discouragement of their widespread
adoption (Reed and Stringer 2016)?

e What is the optimal resolution and frequen-
cy of monitoring to provide decision-mak-
ers with crucial information on key variables
associated with climate change and land
degradation (Reed and Stringer 2016)?

e How can we harmonize findings from mon-
itoring both slow and fast Land Degrada-
tion-related variables (Reed and Stringer
2016)?
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1. Introduction to the
Think Tank conserve
and increase soil organic
carbon stocks

More carbon resides in the soil than in the at-
mosphere and all plant life combined (Lal 2004).
However, soils can act either as a carbon source
or sink (Fig. 1), and currently represent a net
source of greenhouse gas emissions in the EU,
European Environmental Agency (EEA 2022).
Thus, improved soil management geared at im-
proving soil heath and reducing C losses could
substantially contribute to achieving European
Union climate targets. EU member states report-
ed a total loss of 108 Mt CO,, from cultivation and
drainage of 17.8 Mha of organic soils in the year

2019, whereas only 44 Mt CO, were removed
from the atmosphere by 387.6 Mha mineral soils
(EEA 2022). In Europe and globally, peat soils
contain the highest carbon stocks (Batjes 2002,
De Vos et al. 2015) and it is essential to man-
age the water level of peat wetlands to maintain
these stocks (Lloyd 2006). On average, global
agricultural topsoil may have lost 2.5 * 2.3 Mg
C ha™' (3.9 £ 5.4%) under constant net prima-
ry production (NPP). When accounting for NPP
variations influenced by temperature and precip-
itation, the estimated loss is 1.6 + 3.4 Mg C ha™’
(2.5 £ 5.5%) (Poeplau and Dechow 2023).

It is important to acknowledge that in addi-
tion to mineralisation, a significant loss of soil C
happens by erosion and leaching (Chenu et al.
2019). Thus, the SOC stocks are a result of the
simple balance of input and output with time as
outlined in Equation 1:
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dC/dt = I(t) - k(t)C (eq. 1)
where | is organic C input, k is the rate of C loss
in the time-interval t.

The EU mission: a Soil Deal for Europe, de-
fines “conserving soil organic carbon stocks”
as one of the 8 mission objectives, addressing
the importance of maintaining, or in many situ-
ations increasing the SOC stocks. As illustrat-
ed in figure 1, SOC is the main component of
soil organic matter (SOM), mainly originating
from plant debris accumulating and decaying
in soil (Hoffland et al. 2020), slowly becoming
a product dominated by molecules of micro-
bial signature (Kallenbach et al. 2016), mixed
and often adhering to soil minerals (Lehmann

@ O ¢ SOILSFOREUROPE

SOLO Soil organic
e @ O carbon stocks

NEP = GPP -R(d, h, p)

Soil
ecosystem
services

and Kleber 2015). A large body of previous re-
search shows that the total input of organic
C is a crucial factor in determining the long-
term C stock, together with soil properties that
control SOC stabilization (Mikutta et al. 2007,
Schmidt et al. 2011). In 2017, the soil carbon “4
per mille 1000” initiative was launched to inves-
tigate the potential in increasing the soil organ-
ic matter stocks by 0.4%/year to compensate
for anthropogenic release of greenhouse gas-
ses (Minasny et al. 2017). This has fuelled an
interesting debate on the complexity of soils,
it's their use and quality in relation to carbon
storage e.g (Moinet et al. 2022, Powlson and
Galdos 2023, White et al. 2018). There is, how-
ever, an overwhelming body of evidence that

Soil organic
matter

Fast | Slow

Figure 1. The figure illustrates how soil organic carbon (SOC) is a key component in the global carbon cycle. The flow of
carbon (C) in the ecosystem is intricately linked to SOC stocks as fast and slow reacting soil organic matter. The C-flow
play a crucial role in providing essential ecosystem services, acting as both a carbon sink and a source, depending on land
use and management practices. The net ecosystem production (NEP) is a function of the gross primary production (GPP),
respiration (R) by herbivores (h), plants (p), below- and above ground decomposers (d).
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increasing SOC stock in agricultural soils can
help sustain or even improve biological, phys-
ical, and chemical soil properties, with bene-
fits for soil organisms, root growth, as well as a
range of other functions of soils important for
many ecosystem services (Powlson and Galdos
2023). In cropland soils, the SOC stock is often
declining, and vulnerable to further losses due
to intensive management and climate change.
Emphasizing the entire carbon cycle and the
various functions of SOC, not just its stable
forms, to better address climate mitigation and
ecosystem functions, is essential for creating
sustainable and resilient ecosystems (Janzen
2024). Conserving SOC in soils may support
climate change adaptation, resistance and re-
silience to adverse weather conditions (Qiao et
al. 2022), but it is challenging to combine glob-
al climate change mitigation and adaptation,
through soil organic carbon sequestration while
at the same time enhancing food security.

This soil mission objective aims at identi-
fying actions that can limit the current carbon
losses from cultivated soils and preferably re-
verse it to a rate of 0.1 - 0.4% increase per year
(European Commission n.d.). The mission's ob-
jectives are relevant not only for supporting the
aim to improve soil health by 2030, but also for
the member states to become carbon neutral
by 2050 (European Commission, n.d.). The SOC
Think Tank addresses the importance of main-
taining, or in many situations where possible in-
creasing the soil organic carbon SOC stocks by:

o Addressing the impacts of management:
o Climate change and adaptation technol-
ogies
o Biodiversity and soil health
o Forestry management
o Agronomic and land use management
e Finding Technical solutions for monitoring,
reporting and verification (MRVs):
o Soil carbon measurement and monitoring
o Considering the socio-economic context:
o Policy making and decision support
o Urbanization and circular economy
o Education and awareness raising
o EU-footprints on SOC-stocks outside EU
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2. State-of-the-Art

2.1 Current status of
knowledge on conserving
and increasing soil organic
carbon stocks

Soil carbon stocks and quality are influenced by
climate, soil minerals and aggregation (Lehmann
and Kleber 2015), the rate of plant primary pro-
duction, plant root interaction with soil and soil bi-
ology (Bai and Cotrufo 2022, Katterer et al. 2011),
and various management factors, such as land
use, soil management and crop rotation (Cui et
al. 2022, Fornara and Higgins 2022, Haddaway et
al. 2017). A review of recent studies by Bai and
Cotrufo (2022) highlights the essential role of
management improvements, restoration and the
capacity of plants and soil biology in controlling
the formation of mineral associated organic ma-
terial (MAOM) and particulate organic material
(POM) promoting SOC storage, and thus mediat-
ing the impacts of climate change. The biogeo-
chemistry of SOC is a dynamic continuum, ranging
from intact plant residues to highly oxidized car-
bon in carboxylic acids. Understanding this con-
tinuum requires a mechanistic grasp of how SOC
interacts with minerals, and how microbial activi-
ty mediates the balance between organic matter
stocks and flows (Lehmann and Kleber 2015). Soil
carbon is vastly heterogeneous, encompassing
everything from last hour’s root exudates to per-
sistent humified material, millennia old (Amund-
son 2001). Soil organic matter is biologically most
useful when it breaks down and releases plant
nutrients, which is in direct contrast to the aim of
storing more carbon in soils (Janzen 2006).

The EUSO soil health dashboard reveals
that over 60% of EU soils are affected by one or
more soil degradation processes or by soil seal-
ing (EU comission 2023b), however gaps remain
due to limited data on various soil degradation
issues. Soil health is closely linked to SOC, as
SOM affects soil structure, soil life and elemen-
tal cycles, which together sustain essential eco-
system functions such as erosion protection, soil
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biodiversity, primary production, climate regula-
tion and water quality (Hoffland et al. 2020). The
status of carbon quality, such as particulate and
mineral associated fractions in relation to its sta-
bility and soil structure in agronomic and forests
soils, has thus been a matter of intense research
(Georgiou et al. 2022, Liang et al. 2017).

Increasing SOC stocks for climate change
adaptation in Europe necessitates understand-
ing the trade-offs and synergies of soil man-
agement strategies (SMS) and land use change
(LUC) in relation to SOC stocks. This is closely
linked to the concept of soil as a living ecosys-
tem and the impact of biodiversity on SOC. Many
lists of indicators for soil quality and soil health
include carbon content and microbial respiration
together because they are positively correlat-
ed (EU comission 2023a). This complex topic
is influenced by various factors, including land
use, environmental conditions, and biodiversity
(Ratcliffe et al. 2017). Microbial biomass does
provide ,early warning’ of slow changes in total
SOC (Powlson et al. 1987). But biomass is not the
easiest method for routine use. Alternatives ex-
ist; see Bongiorno et al. (2019). As microbial ac-
tivity and nutrient release increase with increas-
ing carbon content, nutrient mining may occur,
potentially counteracting efforts to improve soil
health Additional biological indicators may also
provide insight about C dynamics and microbial
activity (Liptzin et al. 2022).

Estimates of SOC stocks in Europe and
globally are characterized by significant variabil-
ity and complexity, influenced by factors such as
initial SOC stock, climate, land use, and soil type.
The initial SOC stocks are tightly related to SOC
loss and initial SOC stocks explain the variability
of the loss of SOC stocks globally (Poeplau and
Dechow 2023). Soil organic carbon stocks in Eu-
ropean agricultural soils are estimated at 17.63 Gt
for the 0-30 cm depth, with regional variations
due to climate and land use (Lugato et al. 2018).
The average SOC stocks in forest floor soils has
been estimated at 221t C ha™", 108 t C ha ' in
mineral soils, and 578 t C ha~"in peat soils, mea-
sured to a depth of 1 meter. In line with global
trends observed in forest soils, the vertical dis-
tribution of SOC showed that approximately 50%
of the carbon was concentrated in the top 20 cm,
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and about 55-65% was found within the top 30
cm of the soil profile (Vos et al. 2015). Soil or-
ganic carbon stocks and their distribution in the
landscape are influenced by environmental fac-
tors such as climate, soil pH, and land cover type,
which vary across Europe (Vos et al. 2015). This
spatial variability necessitates region-specific
models for accurate SOC estimation. Current es-
timates and models indicate both challenges and
opportunities for SOC management, highlight-
ing the need for further research to refine these
estimates to reduce uncertainties, and support
effective policymaking for carbon sequestration
and soil management in general.

Integrating soil monitoring frameworks with
natural capital accounting can improve assess-
ments of soil conditions and changes, supporting
policy and socio-economic decisions. While pub-
licawareness of the importance of soil health, soil
carbon, and climate change is growing in Europe,
significant gaps and challenges remain (Thorsee
et al. 2023). Enhancing knowledge transfer and
increasing public engagement are essential. Key
recommendations include strengthening knowl-
edge brokers, making research more applica-
ble to practitioners, and providing incentives for
sustainable land management.

Changes in soil carbon stocks occur slowly,
with management effects varying across climate
zones and soil types. Effective implementation
of soil carbon management technologies neces-
sitates interaction with all relevant stakeholders,
including farmers and landowners, agronomic
advisors, agricultural supply companies, policy-
makers, and those involved in the food supply
chain. Practitioners possess essential knowl-
edge and experience about their own land, and
mutual knowledge exchange will facilitate the
necessary engagement for innovative technolo-
gy implementation, ultimately improving soil car-
bon stocks and overall soil health.

In general, there is a need for more knowl-
edge on long-term trends in European cultivated
and non-cultivated soils (such as forests, peat,
pasture, natural grass and heath lands) and doc-
umentation on consequences of land use chang-
es, impacts of urbanization and new technologies
on soil properties and soil organic carbon stores.

This is best achieved by a combination of:
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1. detailed studies to investigate mechanisms
of C turnover and stabilization

2. continued interpretation and re-interpreta-
tion of data from long-term experiments

3. surveys of organic C changes in realistic
on-farm situations

4. interaction between policy makers and rele-
vant stakeholders

2.2 Prioritizations of
knowledge gaps

The SOC Think Tank has examined the state of
the art and identified knowledge gaps regarding
the impact of agricultural and forest land uses
on SOC. It also explored how biodiversity, the
circular economy, and urbanization interact with
SOC stocks. Additionally, the need for further
research and implementation in modelling and
method standardization was highlighted. The in-
vestigation extended to identifying how SOC is
affected by EU policies outside the EU and ad-
dressing literacy gaps in this context. Numerous
knowledge gaps were identified for each topic.
Despite this, several gaps can be grouped and
prioritized, while still validating the identified re-
search and innovation development and appli-
cation gaps. The preliminary identification of all
knowledge gaps was published in the Almas et
al. (2024) scoping document.

Before the stakeholder workshop organized
by the SOLO team in Sofia on November 5th and
6th, 2024, the SOC Think Tank key stakeholders
identified the most critical knowledge gaps for
each of the aforementioned topics affecting SOC
stocks. Based on this pre-identification, Think
Tank members grouped and reported the ten
most essential and comprehensive knowledge
gaps for further prioritization at the Sofia work-
shop. The key knowledge gaps that received the
highest scores defined a preliminary ranking.
This process was later repeated with a larger
group of stakeholders in an online meeting. The
cumulative scores resulted in the ranking identi-
fied in Table 1 below. The final list was also pre-
sented and verified by participants of the “soil
pollution and restoration” Think Tank ,Soil-week"
event held in Hungary on December 4th.
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Table 1. Ranking of the top 10 knowledge gaps identified (a
full list of all identified knowledge gaps is available under
Suppl. material 1. KDG = knowledge development gap, KAG =
knowledge application gap).

Type of
M Knowledge gap knowlllgdge gap

1 Increasing SOC stocks for climate | KDG
change adaptation

2 Biodiversity; interaction between |KDG
soil carbon and soil biology

3 Policy making and decision KAG
support

4 Soil carbon monitoring, reporting | KDG
and verification (MRV)

5 SOC and circular economy, LCA | KDG

6 SOC in agronomic systems KDG

7 Urbanization and SOC KAG

8 Education and awareness raising | KAG
on SOC

9 Management of forests and SOC |KDG

10 EU footprints of soil carbon KAG

outside Europe

3. Roadmap for the
topic “Conserving and
increasing soil organic
carbon stocks”

3.1 Key knowledge gaps

An overview of the prioritized knowledge gaps,
their sector impact, bottlenecks and suggested
actions are summarised in Table 2 (Suppl. mate-
rial 1) in the end of Chapter 3.

Knowledge gap 1: Increase
SOC stocks for climate change
adaptation

The investigation has identified the following
knowledge development gap:

The knowledge gaps to increase SOC stocks
for climate change adaptation requires a broad
and interdisciplinary field of research, involving
various disciplines, methods, and perspectives
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concerning soil health, quantification of SOC
stocks, regional variability, mitigation strategies
and integration with agricultural policies. This
knowledge gap represents several topics requir-
ing knowledge development for further research
and innovation actions.

Many European soils are degraded, neces-
sitating the development of specific indicators
that correlate with SOC storage and climate re-
silience. Monitoring and assessing SOC stocks
across diverse landscapes is challenging due to
inconsistent data and methodologies. Integrat-
ing SOC considerations into agricultural policies
and fostering collaboration among policymak-
ers, scientists, and practitioners is crucial. Ad-
ditionally, understanding the effects of climate
adaptation measures and forest management
practices on SOC, and providing incentives for
farmers and forest owners to adopt sustainable
strategies, is important.

The management of soil should focus on
sustainability of food and fibere production and
sustaining ecosystem services. This puts climate
change adaptation as the primary aim for soil
management rather than mitigation. The impact
of climate change on food and fibere produc-
tion depends on the responses and adaptations
of farmers, consumers, markets, and policies.
These adaptations are the result of complex op-
timization decisions and general equilibrium dy-
namics, and thus difficult to measure and predict
(Page et al. 2020). Increased SOC stocks gen-
erally favour both mitigation and adaptation as
higher SOC in top layers in e.g. no tillage sys-
tems, provide resilience to extreme weather
conditions (Haddaway et al. 2017).

Climate change adaptation includes soil and
crop management practices for soil water reten-
tion and effective water infiltration strategies,
which both are closely linked to maintaining or
increasing SOC stocks. Practices such as or-
ganic amendments and maintaining continuous
living cover improve soil structure, by improving
soil aggregation and enhancing bio-porosity.
Bio-porosity refers to the presence of pores in
the soil that are created or enhanced by biolog-
ical activity, such as the action of soil organisms
like earthworms. This enhances water infiltration
and reduces surface runoff, although bypass
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flow through biopores may increase nutrient
losses (Sims et al. 1998). However, these can
also reduce soil water storage and groundwater
recharge, particularly in dry climates: In Medi-
terranean rainfed agroecosystems, techniques
like no or minimum tillage, and direct drilling im-
prove soil water retention and potentially carbon
storage in top mineral soils (Blanchy et al. 2023).
But the potential in climate change mitigation is
limited considering the whole soil profile (Cai et
al. 2022), acting as both adaptation and mitiga-
tion strategies, and results from cool and humid
climate are not so promising (Honkanen et al.
2024). The choice of tillage and residue man-
agement significantly affects SOC dynamics.
Retaining crop residues can mitigate SOC loss-
es, while residue harvesting leads to substantial
declines (Herzfeld et al. 2021).

Soil organic carbon stocks are influenced by
climate and land use changes, and in Mediterra-
nean areas, conversion from natural vegetation
to agriculture significantly reduces SOC stocks
(Lozano-Garcia et al. 2017). Other studies have
shown the same, and generally the loss of SOC
is strongest when turning grassland and forest
into cropland (De Rosa et al. 2024, Poeplau and
Don 2013). According to the study by Poeplau
and Don (2013) the land use change from crop-
land to forest increased SOC by 21 Mg ha~', while
grassland to cropland decreased SOC by 19 Mg
ha='. Across Europe, SOC stocks may increase
by 2050 under various climate and land cover
scenarios, although the extent varies (Yigini and
Panagos 2016). The effectiveness of these strat-
egies can vary based on local conditions and re-
quires careful consideration of trade- offs.

Farming systems with focus on soil man-
agement, e.g. practicing reduced or no tillage
to achieve minimal soil disturbance, as well as
crop rotation, cover crops, and plant residue or
manure return. Such practices will have impacts
on SOC storage, thus contributing to climate
change mitigation and adaptation.

Organic farming has the potential to in-
crease SOC stocks and sequestration rates
(Clark and Tilman 2017), and can offer larger
environmental benefits in comparison to con-
ventional agricultural systems (Gattinger et al.
2012). However, organic farming generally pro-
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duce slightly less biomass, and the effect on soil
carbon stock from organic farming is complex
and content performance dependent (e.g. cli-
mate, soil characteristics etc, Seufert and Ra-
mankutty (2017)). Organic farming is, in princi-
ple, based on fertile soil that must be maintained
through regular application of organic material
as fertiliser. Over time, this has the potential to
also increase SOC. Organic farming may in some
cases also involve reduced tillage, although soil
tillage is often used for weed control. Reduced
tillage has the potential to increase total SOC
stocks, if crop management is optimized. Krauss
et al. (2022) reported the effect of reduced till-
age on SOC stocks in organic farming systems
in temperate Europe. They found slight increase
in top 10-15 cm, slight decrease in intermediate
dept (down to 50 cm), followed by a slight in-
crease again in 70-100 cm depth. The investiga-
tion reported in Gaudaré et al. (2023) indicates,
though, that unless appropriate farming practic-
es are implemented, expanding organic farming
might reduce the potential for soil carbon se-
questration. According to Lorenz et al. (2019),
the demand for organic products will continue
to grow driven by food safety concerns. Due to
lower yields, however, natural ecosystems may
be increasingly converted to agroecosystems to
meet the demand with uncertain consequences
for the environment.

Regenerative agriculture (RA) may be de-
fined as “an approach to farming that uses soil
conservation as the entry point to regenerate
and contribute to multiple provisioning, regulat-
ing and supporting services, with the objective
that this will enhance not only the environmen-
tal, but also the social and economic dimensions
of sustainable food production” (Schreefel et al.
2020). As such, it consists of a range of differ-
ent practices that vary between regions, farm-
ers and farming systems. It often includes focus
on reduced tillage, crop retention, cover crops
crop residue management. These practices in
combination have shown to increase SOC (Cha-
hal and Singh 2020, Rhodes 2017). Regenerative
agricultural practices do not only enhance car-
bon storage but reports also indicate improved
soil fertility and crop yields in many situations
(Rhodes 2017). In general, it seems likely that
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regenerative practices, particularly reduced or
no-tillage and cover crops, have the potential to
increase SOC content (Breil et al. 2021). Regen-
erative agricultural practices are not only likely
to enhance carbon storage (Breil et al. 2021) but
reports also indicate improved general soil fer-
tility and crop yields in many situations (Rhodes
2017).

Conservation agriculture (CA) is based on
many of the abovementioned principles and fo-
cuses on minimal soil disturbance, permanent
soil cover, and crop rotation. The effects of CA
on SOC stocks are not consistent and depend
on various factors, such as soil type, climate,
crop type, residue management, and duration
of conservation agriculture. A global meta study
showed that CA systems including legume res-
idue retention in combination with manure and
mineral N-admixing have considerable potential
to increase SOC and total N in topsoil layers (Bo-
houssou et al. 2022). But, as with all the prac-
tices considered, research is required to identify
opportunities, barriers, and trade- offs with oth-
er agronomic environmental goals in a range of
environments.

Results of the impacts of agroforestry on
soil C stocks from the boreal zone are scarce,
but some studies show that agroforestry and in-
tercropping can significantly impact soil organic
carbon stocks in Europe. Heimsch et al. (2023).
Trees increased C accumulation of the ecosys-
tem, and thus, the net emissions were estimat-
ed to be smaller than without the tree row, but
soil SOC stocks were not measured. Mayer et al.
(2020) conducted a meta study on temperate
climate zones worldwide and found that agrofor-
estry systems sequester significant amounts of
SOC in topsoil and subsoils. Zuazo et al. (2014)
reported that forest, shrubland, and grassland
in a Mediterranean agroforestry landscape had
higher soil organic carbon stocks compared to
abandoned farmland. Further, Kay et al. (2019)
furhter emphasized the potential of agroforestry
in sequestering carbon and mitigating environ-
mental pressures in European farmland. It has
generally been reported positive effects of di-
versified arable cropping systems on SOC con-
tent in European agroecosystems have generally
been reported (Francaviglia et al. 2019).
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Forest management must incorporate adap-
tive strategies to address climate change impacts,
such as altering tree species composition, adjust-
ing rotation periods, and modifying stand struc-
tures to maintain forest productivity and resilience
(Jandl et al. 2019). Maintaining genetic diversity
and resilience of forest ecosystems is crucial. This
includes selecting tree species and genotypes that
are better adapted to future climatic conditions,
such as increased drought risks (Keenan 2015).

Effective climate change adaptation in mar-
ginal and alpine systems requires managing the
impacts of shifting conditions on these fragile
ecosystems. Adaptation strategies are essential
for preserving biodiversity, ecosystem functions,
and agricultural productivity. In alpine grasslands,
climate change may alter plant species composi-
tion, potentially stabilizing primary production de-
spite warming. However, these changes often lead
to 8deeper root systems, which can influence soil
carbon storage dynamics (Liu et al. 2018). Margin-
al populations of plants, such as those in alpine
environments, may exhibit strong local adapta-
tions to environmental stressors like frost. These
adaptations are crucial for survival but may be lim-
ited by genetic diversity (Kreyling et al. 2014).

The investigation has identified following bot-
tleneck:

Complexity and unclear mechanisms of SOC dy-
namics hinder understanding and application in
climate adaptation strategies.

Suggested actions include:

(i) More experimental research is needed to
study the long-term dynamics of trade-offs
and synergies in SOC sequestration under
various soil management strategies;

(ii) There is also need to developing models and
monitoring programs to better understand soil
carbon stocks and degradation is crucial;

(iii) Research should provide further knowledge
on how soil structure, management practices
and extreme weather events impact organ-
ic carbon stocks, and how this interacts with
functional biodiversity. To assess these ef-
fects, research on harmonizing measuring, ac-
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counting, monitoring and model development
across Europe is required It's also

(iv) It's also essential to provide regional-specific
long-term knowledge for tailoring adaptation
strategies;

(v) There is also a need to increase the under-
standing on the indirect effects of adaptation
practices on soil functions and biodiversity.

(vi) Research should focus on practices that
promote SOC accumulation while balancing
trade-offs between climate adaptation, food
security, and ecosystem services;

(vii) Transfer of existing research to practical
applications remains insufficient (iii) assess
these effects, research on harmonising mea-
suring, accounting, monitoring and model de-
velopment across Europe is required

Knowledge gap 2: Biodiversity -
interaction between soil carbon
and soil biology

The investigation has identified the following
knowledge development gap:

There is limited understanding of how soil biodi-
versity influences carbon cycling processes and
the lack of comprehensive data on soil biodiversi-
ty across different regions and scales. While there
is growing evidence linking plant diversity to soil
carbon cycling, there is limited information on how
soil biodiversity itself influences these processes.

The ,Convention on Biological Diversity
(CBD)“ (www.cbd.int) defines soil biodiversity as
“the variation in soil life, from genes to communi-
ties, and the ecological complexes of which they
are part, that is from soil micro-habitats to land-
scapes.” It encompasses the variety of life below
ground, including microorganisms, microfauna,
mesofauna, and macro/megafauna. Soil biodiver-
sity blends encompasses four complementary di-
mensions of soil systems: soil physics, soil chem-
istry, soil biology, and soil ecosystem functions.
It relates to specific ecological indicators and
includes a wide variety of soil- related Essential
Biodiversity Variables (EBVs) to track the state
and dynamics of global soil biodiversity and eco-
system functioning over time (Guerra et al. 2021).
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Soil biodiversity plays a critical roles in de-
livering ecosystem goods and services, such as
nutrient cycling, water regulation, and soil struc-
ture maintenance. Biodiverse ecosystems may
enhance SOC storage capacity and research can
identify which plant species or microbial com-
munities promote SOC accumulation (Chen et al.
2020, Chen et al. 2018). Plant communities en-
hance SOC through root exudates, litter quality
and mycorrhizal associations, and investigating
these feedback loops may help designing ef-
fective climate adaptation strategies. Moreover,
biodiversity does affect SOC response to land
use changes, and the relationships vary across
ecosystems, climates, and soil types. There is
an intricate relationship between SOC, soil biodi-
versity and ecosystem resilience in global soils.

High soil biodiversity supports various soil
ecosystem functions and increases the system'’s
ability to withstand and recover from environ-
mental changes (Delgado- Baquerizo et al. 2025),
and diverse plant species and soil organisms
improve nutrient cycling and soil fertility (Furey
and Tilman 2021). This is achieved through in-
teractions among soil organisms, which enhance
nutrient availability and storage, leading to in-
creased soil fertility and reduced fertilizer needs
(Delgado-Baquerizo et al. 2020). There is evi-
dence that that high soil biodiversity increases
ecosystem stability, resistance to environmental
changes, and protection against diseases (Wang
et al. 2025). These functions collectively contrib-
ute to a more robust and sustainable soil ecosys-
tem, capable of adapting to and recovering from
various environmental challenges (Bender et al.
2016, Brussaard et al. 2007), and soil health, high
biodiversity and conservation of soil organic car-
bon are strongly connected (Chen et al. 2020,
Lal 2016). It is important to note, however, that in
some terrestrial ecosystems, the functional bio-
diversity is naturally low, particularly in marginal
and extreme environments. This low biodiversity
is characteristic for such systems, but this results
in limited functional redundancy, making these
ecosystems particularly susceptible to distur-
bances (Wall and Virginia 1999).

High plant biodiversity boosts plant pro-
ductivity and root biomass, enhancing micro-
bial growth and activity (Prommer et al. 2020).
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This leads to greater carbon inputs into the soil
and improved carbon sequestration. Maintaining
high levels of plant and soil organism diversity is
essential for improving soil carbon storage and
mitigating climate change impacts. Land-use
practices that promote biodiversity, such as or-
ganic farming and diverse plantings, are bene-
ficial for SOC conservation (Maron et al. 2018).
However, the complexity of mechanisms at play
is not yet well understood. For example, mixed
species stands with low diversity in root archi-
tecture have recently been found to contribute
to soil C storage more than those displaying
contrasting root-system architecture (Yin et al.
2025). These insights underscore the impor-
tance of integrating biodiversity considerations
into land management and policy decisions to
enhance soil carbon sequestration.
Experimental evidence drawn from biodiver-
sity ecosystem functioning experiments has gen-
erally shown that higher plant biodiversity leads
to both higher aboveground and belowground
plant productivity and concordantly higher soil
carbon. In 1994, Tilman and Downing reported
that preservation of biodiversity is essential for
the maintenance of stable productivity in eco-
systems (Tilman and Downing 1994). It may be
the case that in a grassland clay rich soils, where
essential nutrients are limiting, that the best
yielding monoculture species may be superior to
a mixture of plant species for producing biomass
and storing soil carbon. However, there are also
a host of what ecologists call ,niche differences”
that could explain why in some cases a higher
number of species would yield greater soil car-
bon. For example, CAM can plant species can
differentiate in hot and dry vs cold and wet sea-
sons, exhibiting different rooting depths, produc-
ing different types of litter that are differentially
processed by the microbial community (Furey
and Tilman 2021, Kraychenko et al. 2019, Lange
et al. 2015, Lange et al. 2021, Perry et al. 2023,
Spohn et al. 2023, Yang et al. 2019). Higher plant
diversity can enhance soil multifunctionality and
increase SOC stocks by promoting below-ground
organism diversity, which in turn supports carbon
sequestration (Schittko et al. 2022, Steinbeiss et
al. 2008, Yin et al. 2025). The study by Stein-
beiss et al. (2008), showed that higher species
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richness significantly increased carbon storage
and reduced carbon losses across all soil depths.
Species diversity was found to be more important
than biomass production for soil carbon chang-
es. Finally, they report that tall herbs seem to aid
in reducing carbon losses below 20 cm depth
early on. An important observation is that this ef-
fect may be consistent across different land-use
types, including forests, grasslands, and crop-
lands (Chen et al. 2020). In contrast, intensifying
land use leads to a reduction in the number of
soil biota functional groups, with fewer species
that are more closely related taxonomically (Tsi-
afouli et al. 2015).

Biodiversity, both above- and below ground,
is integral to maintaining and enhancing SOC in
Europe. Diverse plant species and soil organisms
contribute to carbon sequestration and over-
all ecosystem functionality. Land use changes
and agricultural practices significantly influence
these dynamics, with more diverse systems gen-
erally supporting higher SOC levels. Conserva-
tion efforts should focus on maintaining biodi-
versity to ensure the sustainability of soil carbon
stocks. Li and colleagues (Li et al. 2024) exam-
ined croplands with varying SOC levels to ex-
plore the relationship between SOC decomposi-
tion and the diversity, composition, and networks
of belowground communities, including archaea,
bacteria, fungi, protists, and invertebrates. They
reported that SOC is crucial for the structure and
metabolic activities of belowground biota. Thus
understanding the evolution of belowground
communities and their feedback on SOC dynam-
ics seems important for carbon cycling, biodiver-
sity conservation, and carbon management.

Biodiversity in urban ecosystems remains a
largely unexplored field. However, even in these
environments, biodiversity appears to enhance
ecosystem functions and services, particularly
through soil carbon sequestration. Schittko et al.
(2022) conducted a study in Berlin, Germany, and
they found that plant diversity positively influ-
ences soil multifunctionality and organic carbon
stocks by increasing the diversity of below-ground
organisms. These benefits are seen in both native
and non-native plant species, though they are
more pronounced in native species. Therefore,
increasing the diversity of plants and soil fauna in
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urban grasslands can improve soil multifunction-
ality and help mitigate climate change.

A study from South Africa addressed that
although no clear global relationship exists, pos-
itive local and regional relationships highlight the
potential value of biodiversity in enhancing carbon
management, but that knowledge gaps still hin-
der effective policy development for co-managing
biodiversity and carbon (Midgley et al. 2010). This
is also acknowledged in the study by Chenu et al.
(2019), reporting that while existing knowledge and
tools address many questions, further research is
needed, especially on practices and the role of soil
microorganisms in stabilizing soil organic matter.
Protecting natural areas helps safeguard biota and
reduce atmospheric carbon emissions, and includ-
ing the interaction between soil biodiversity and
soil carbon content, could increase funding oppor-
tunities for conservation (Sheil et al. 2016).

Evidence points to the need for further re-
search to understand the role of biodiversity in
SOC dynamics, the impact of land use manage-
ment practices, and how to integrate soil biodi-
versity into policy and conservation efforts. Ad-
ditionally, it is crucial to investigate how climate
change and environmental conditions interact
with biodiversity and to better understand be-
lowground biological processes.

The investigation has identified the following
bottlenecks:

(i) The lack of understanding of the mechanisms
driving the observed congruence between
biodiversity and carbon stocks limits the abili-
ty to predict and manage ecosystem services
effectively.

(ii) Limited knowledge about how belowground
communities—particularly microbes and in-
vertebrates—regulate SOC turnover and eco-
system functioning constrains the develop-
ment of holistic soil management strategies.

(iii) The unclear influence of biodiversity on SOC
dynamics in novel ecosystems, such as those
with high non-native species presence or urban
disturbances, hampers the formulation of adap-
tive conservation and restoration practices.

(iv) The poorly understood interplay between
plant litter inputs and microbial respiration
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across ecosystems creates a bottleneck in
determining how plant diversity influences
SOC accumulation and stability.

(v) The lack of clarity on how different biodiver-
sity measures—such as species richness and
functional traits—affect carbon stocks, espe-
cially in forest ecosystems, impedes the inte-
gration of biodiversity into carbon manage-
ment frameworks.

(vi) Current policy frameworks are not fully
equipped to address the intricate and dynam-
ic interactions between biodiversity and SOC,
creating a bottleneck in implementing effec-
tive climate and conservation strategies.

(vii) The lack of integration of recent scientific
insights—particularly regarding the role of soil
microorganisms and biodiversity in stabilizing
soil organic matter—into agricultural and for-
est management practices hinders efforts to
enhance SOC storage at scale.

(viii) Uncertainty about how soils should be used
for carbon storage hinders climate mitigation
planning.

(ix) Limited research and political sensitivity
around carbon sequestration techniques hin-
der policy support and long-term adoption.

Suggested actions include:

(i) Integrate belowground biological processes
into SOC models to improve carbon manage-
ment strategies.

(i) Developing high-resolution maps and models to
predict soil biodiversity and SOC is crucial. This
includes using digital soil mapping and regression
analysis to link soil attributes with biodiversity.

(iii) An integrative approach that includes setting
baselines, monitoring threats, and establish-
ing soil indicators is recommended.

(iv) Encouraging sustainable land-use practices
and reducing agricultural intensification can
help preserve soil biodiversity. Providing in-
centives for sustainable practices and improv-
ing knowledge access are also suggested.

(v) Providing incentives for sustainable practic-
es and improving knowledge access are also
suggested.

(vi) Strengthen the role of knowledge brokers
and improve the relevance of research activ-
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ities for land users through targeted advice
and information dissemination.

(vii) Encourage research that integrates social
and ecological systems to develop compre-
hensive soil carbon management strategies.

Knowledge gap 3: Policy making
and decision support

The investigation has identified the following
knowledge application gap:

The gap between existing scientific knowledge
and its practical implementation in policy and land
management creates a bottleneck in efforts to
conserve and enhance SOC stocks. Without effec-
tive knowledge exchange and decision support,
proven strategies remain underutilized, slowing
progress in SOC restoration and climate resilience.

European soil carbon management is sup-
ported by various policy frameworks and social
strategies, including the European Green Deal,
Common Agricultural Policy (CAP), and carbon
credit systems. The European Green Deal aims
to make the EU climate-neutral by 2050, incor-
porating soil protection measures such as re-
ducing chemical pesticide use and increasing
organic farming. The European Climate Law also
addresses SOC enhancement and wetland main-
tenance (Montanarella and Panagos 2021). The
CAP supports soil carbon management through
incentives for sustainable practices and the in-
tegration of soil carbon sequestration into cli-
mate-smart agriculture. However, current policies
are deemed insufficient for large-scale adoption,
suggesting a need for more focused regulatory
frameworks (Verschuuren 2018). Carbon farm-
ing practices incentivized through carbon cred-
it systems reward increased soil carbon stocks
(Criscuoli et al. 2024). The credit system risks
masking harmful practices, especially outside
the EU, through offsetting, while also creating
dependency on external, non- productive fund-
ing, echoing inefficiencies seen in parts of the
CAP. Recommendations include expanding eligi-
ble practices and setting regulatory baselines to
ensure effective implementation. The EU Soil Ob-
servatory collects data and develops indicators
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to assess progress towards soil management
targets, supporting policy development and im-
plementation (Montanarella and Panagos 2021).
Despite these initiatives, challenges persist
in policy adequacy and knowledge dissemina-
tion. To ensure effective soil carbon management
and climate change mitigation, it is essential to
address these issues through targeted interven-
tions and local adaptation strategies. Increasing
SOC stocks is crucial for enhancing soil fertility,
food security, and climate change mitigation, but
significant knowledge and application gaps re-
main in policymaking and decision support.
There is a need to clearly differentiate be-
tween SOC storage and sequestration and to de-
velop methods for accurately estimating poten-
tial SOC gains from various agricultural practices.
Chenu et al. (2019) elaborate on how implement-
ing management strategies to boost SOC stocks
addresses several key questions and consid-
erations, including methods to increase SOC
stocks, the rate and duration of these increases,
prioritizing storage areas, estimating potential
carbon gains, and selecting suitable agricultural
practices. According to Maenhout et al. (2024),
soil management strategies (SMS) can enhance
SOC stocks, reduce greenhouse gas (GHG)
emissions, and decrease nitrogen (N) leaching.
However, some SMS may increase emissions of
GHGs like nitrous oxide (N,0) or methane (CH,),
offsetting the benefits of SOC sequestration.
Understanding these trade-offs and synergies is
essential for selecting sustainable SMS for Euro-
pean agriculture, but knowledge remains limited.
The effect of policymaking and support on
the long-term dynamics of SOC stocks under dif-
ferent management practices and climatic condi-
tions is also underexplored (Maenhout et al. 2024,
Wang et al. 2022). Globally, much research pre-
dominantly focuses on ecological aspects, with a
lack of integration of social components, such as
farmer perspectives, which are essential for the
sustainability of carbon-building practices (Amin
et al. 2020). The study by Thorsee et al. (2023)
highlights that stakeholders emphasize the need
for better knowledge transfer to practitioners and
recommend raising awareness, improving research
relevance, and providing incentives. Moreover, tai-
loring soil management techniques to local condi-
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tions, such as climate and farming systems seems
essential to enhance SOC (Makipaa et al. 2024).
Common barriers seem to include biophysical
conditions, financial support, and advisory service
quality. Opportunities lie in economic incentives,
regulatory harmonization, and fostering long- term
planning and resilience (Mills et al. 2020).

The investigation has identified the following
bottlenecks:

(i) Uncertainty about how soils should be used
for carbon storage hinders climate mitigation
planning.

(i) Limited research and political sensitivity
around carbon sequestration techniques hin-
der policy support and long-term adoption.

Suggested actions include:

(i) Strengthen the role of knowledge brokers and
improve the relevance of research activities
for land users through targeted advice and in-
formation dissemination.

(ii) Encourage research that integrates social and
ecological systems to develop comprehensive
soil carbon management strategies.

(iii) Promote studies in underrepresented regions
to ensure a more global understanding of SOC
dynamics.

(iv) Invest in monitoring and modelling frame-
works to provide robust data for decision-
making and policy development.

3.2 Prioritized knowledge
gaps
Knowledge gap 4: Soil carbon

monitoring, reporting and
verification (MRV)

The investigation has identified following know-
ledge development gap:

There is a significant lack of understanding and
infrastructure for monitoring, reporting, and ver-
ifying SOC across Europe.
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Limited data, inconsistent methods, and
lack of localized models hinder accurate mon-
itoring and verification of SOC across Europe.
This includes insufficient long-term datasets,
non-standardized sampling methods, and a
shortage of localized models that reflect en-
vironmental variables like climate, soil pH, and
land cover, limiting the accuracy and effective-
ness of SOC assessments for policy and land
management. To effectively address content
and quality of SOC stock, several methods ex-
ist ranging from laboratory measurements to
remote sensing modelling. In short, the deter-
mination of SOC stocks requires measurements
of bulk density, gravel content and SOC con-
centration in different depths. Careful, repeated
field sampling followed by laboratory analysis
following standardized and procedural guide-
lines are, however, necessary for accurate re-
porting and verification. Traditional analysis
methods are often time consuming, so more
recent methods, such as Visible-Near-Infra-
red (vis—NIR) Spectroscopy for SOC determi-
nation and Active Gamma-Ray Attenuation for
bulk density can be relevant for some studies.
However, gravel content may still require (wet)
sieving (England and Viscarra Rossel 2018). For
remote sensing eddy covariance is a costy ap-
plication useful for measuring respiration and
carbon fluxes, providing insights into regional
SOC sequestration when used in combination
with simulation modelling (Zeng et al. 2020).
There is a challenge in developing cost effective
methods for detecting changes in SOC resulting
from changes in management etc., but sever-
al direct field applicable methodologies exist,
such as laser-induced breakdown spectroscopy
(LIBS) (Cremers et al. 2001), inelastic neutron
scattering (Wielopolski et al. 2000), Mid-In-
frared and Near-Infrared Diffuse Reflectance
Spectroscopy (McCarty et al. 2002).

Existing soil monitoring networks in Europe
are inadequate for comprehensive SOC account-
ing. They often lack biological and physical pa-
rameters, focusing predominantly on chemical
attributes, which limits their ability to assess
soil functions comprehensively (van Leeuwen et
al. 2017). There is a lack of standardized meth-
ods and comprehensive datasets, particularly
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for agricultural soils. This results in inconsistent
data across different regions and countries, (Ro-
drigues et al. 2021), making it difficult to com-
pare and integrate findings at a European scale
(Lugato et al. 2014). Efforts to model SOC stocks
are ongoing, but these models often require im-
provements to account for regional environmen-
tal factors and land-use changes accurately (Rial
et al. 2017). The impact of environmental factors
such as climate, soil pH, and land cover on SOC
storage is not fully understood, necessitating
more localized and specific models (Prechtel et
al. 2009, Rial et al. 2017).

The investigation has identified following bottle-
necks:

(i) Lack of long-term datasets, standardized
sampling protocols, and harmonized data
across regions, prevents accurate, compara-
ble SOC assessments across Europe, limiting
the reliability of MRV systems.

(ii) Traditional SOC measurement methods are
time-consuming, and newer technologies
(e.g., vis-NIR, LIBS, neutron scattering) are
underutilized or costly and this slows down
large-scale, cost-effective SOC monitoring
and reduces the feasibility of frequent up-
dates.

(iii) SOC models often fail to account for key en-
vironmental variables like climate, soil pH, and
land cover, reducing the accuracy of SOC pre-
dictions and limits the ability to tailor manage-
ment strategies to local conditions.

(iv) Existing monitoring networks focus mainly
on chemical properties and lack biological and
physical indicators, limiting comprehensive
understanding of soil functions and their role
in SOC dynamics, weakening the foundation
for effective MRV and land-use policy.

Suggested actions include:

(i) Develop unified protocols and long-term mon-
itoring programs across Europe.

(ii) Create open-access databases to integrate
data across regions and land uses.

(iii) Support the development and field use of
rapid SOC assessment tools.
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(iv) Provide technical training for researchers
and land managers in modern SOC methods.
(v) Refine models to include climate, soil pH, and

land cover for better regional accuracy.
(vi) Integrate biological and physical indicators into
existing networks for holistic SOC assessment.

Knowledge gap 5: SOC in circular
bioeconomy, LCA

The investigation has identified following know-
ledge development gap:

The effects of organic residues on soil carbon
processes and ecosystem services are not fully
understood, while potential risks from pollutants,
microplastics, and unregulated toxic compounds
raise concerns about soil health and safety.

In a sustainable bioeconomy, recycling of
nutrients from organic residues is imperative
(Hellsmark et al. 2016, Sawatdeenarunat et al.
2016). The circular economy emphasizes max-
imizing resource reuse and minimizing waste,
which directly influences soil management. Effi-
cient soil and land management are essential for
the circular economy to function effectively, as
soils play a critical role in food production, wa-
ter filtration, and carbon storage (Breure et al.
2018). There is a huge diversity in organic res-
idues depending on their origin and the type of
process involved in their production. Hence, it is
essential to distinguish between organic wastes,
residues, and processed products like compost
and digestate. Certified compost and digestate,
produced through regulated biological process-
es, are no longer considered waste but valuable
soil amendments under EU law, provided they
meet strict quality and safety standards (Regula-
tion (EU) 2019/1009 2019). Application of organ-
ic residues as soil amendment and fertilizer to
agricultural land gives the opportunity of recov-
ering the nutrients, primarily N and P, and of po-
tentially improving soil quality by adding organic
matter. The European Union's new Soil Strategy
for 2030 aligns with the circular economy by
setting a framework for protecting and restor-
ing soils, however, only materials that comply
with legal thresholds can and should be used in
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agriculture; those exceeding limits remain clas-
sified as waste. Harmonized quality standards
and proper life cycle assessments are crucial to
ensure their safe and effective use. This strate-
gy also covers sustainable waste management
(Panagiotakis and Dermatas 2022). The circular
economy principles are integrated into broader
environmental strategies, such as the European
Green Deal. The European Union promotes the
use of organic inputs on arable land to maintain
or increase SOM, particularly in carbon-depleted
soils. This is part of broader strategies to offset
greenhouse gas emissions and ensure soil pro-
tection across member states (Marmo 2008).
Long-term application of organic amend-
ments, such as compost and sludge, can sig-
nificantly increase SOC contents. Studies also
show that the repeated application of organic
residues enhances soil biological functions, in-
cluding microbial biomass carbon and enzymatic
activity, which are crucial for maintaining healthy
soil ecosystems (e.g. Diacono and Montemurro
2010). Regular addition of composted organ-
ic residues, for instance, improves soil physical
properties, such as aggregate stability and bulk
density, and enhances soil fertility, increased
crop yields and improved crop quality without
reducing yield quality (Agegnehu et al. 2016).
However, organic residues may also increase
greenhouse gas production through the input of
microbial substrates and increased mineralization
of N. Pyrolyzing residual biomass for biochar ap-
plication to soil is the main method for C seques-
tration in soils, that also has clear positive effects
on reducing N,O emissions form soils (Guenet et
al. 2021 ). The soil plays a key role in a circular
economy and sustainable society, but there is
significant lack of knowledge concerning safe and
energy-efficient recycling of organic residues in
soil, and its impact on SOC stocks and soil health.
Policies often prioritize meeting crop N and
P demands. Strict environmental regulations gov-
ern the use of organic residues in agriculture,
with a particular focus on the treatment of ani-
mal manure and the management of farm nutri-
ent balances. These regulations are designed to
prevent environmental contamination and pro-
mote sustainable waste management practic-
es (Lourenzi et al. 2021, Westerman and Bicudo
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2005). Mixed municipal solid waste compost, is
no longer going to be representative for compost
and digestate practices in the EU due to the obli-
gation to separately collect bio-waste. However,
persistent contaminants such as PFAS, and bio-
char containing heavy metals (Sgrmo et al. 2024)
can still be introduced, highlighting the need for
careful monitoring, regulation, and ongoing re-
search to safeguard soil health and food safety.
Finally, composts and sewage sludge may con-
tain significat amounts of microplastic fragments,
depending on the origin of the material (Boctor et
al. 2025). Hence, the use of organic residues for
nutrient recycling and C addition is challenging,
as we should not make use of organic residues
if they transfer contaminants, pathogenic organ-
isms, and unwanted plant species such as weeds
to healthy soils. While circular economy principles
emphasize resource efficiency, their direct influ-
ence on SOC stocks remains an area of study.

It would therefore be important that organ-
ic amendments, such as compost and digestate,
intended for agricultural use, are consistent-
ly produced through improved and traceable
waste management practices, ensuring compli-
ance with the criteria set out in the EU Fertilizing
Products Regulation (Regulation (EU) 2019/1009
2019). At the same time, it would be advisable
to further harmonize at the European level the
minimum quality requirements for compost and
digestate to facilitate their safe use in agriculture
and to ensure a level playing field across Member
States. In order to correctly assess the intrinsic
value of organic amendments such as compost
and digestate, as well as their long-term effects,
it is necessary to carry out a proper evaluation
of the various ecosystem services provided by
soil. Similarly, to perform a life cycle assessment
(LCA) of organic amendments, the benefits of
these products must be correctly estimated and
evaluated. This is particularly true as not all LCA
methodologies include emissions from reference
scenario in which no composting takes place.

The investigation has identified following bottle-
necks:

(i) Limited understanding of SOC and ecosys-
tem impacts, limits accurate prediction of
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carbon sequestration potential and informed
decision-making on residue use in sustainable
land management.

(i) Risk of soil contamination from organic res-
idues limits safe application of organic resi-
dues and public trust in recycling practices
within the circular economy.

(i) Lack of harmonized quality standards and
traceability limits safe, widespread adoption
of organic amendments and a level playing
field for sustainable agriculture.

(iv) Incomplete life cycle assessments (ICA) limits
accurate environmental impact assessments
and policy development for circular bioecon-
omy strategies.

(v) Regulatory prioritize nitrogen and phospho-
rus management, often overlooking broader
soil health indicators and contaminant risks,
hinders comprehensive soil protection and the
integration of organic residue use into long-
term soil carbon strategies.

Suggested actions include:

(i) Enhance research on microbial interactions
and nutrient cycling in soils with organic
amendments to improve carbon sequestration
models and nutrient management strategies

(i) Conduct more detailed studies on the effects
of organic waste on various soil organisms to
better understand and mitigate potential toxic
impacts

(iii) Develop more precise and comprehensive
methods for monitoring soil structure changes
and pollutant levels, including advanced imag-
ing and chemical analysis techniques.

(iv) Implement better waste management prac-
tices that consider the complex interactions of
different waste types and their potential envi-
ronmental impacts

(v) Increase data collection on soil physical,
chemical and biological properties and pro-
mote sharing of findings to build a more com-
prehensive understanding of the effects of
organic residue applications

(vi) Revising policies to account for the complex
interactions of organic waste components and
their long-term effects on soil health and eco-
system stability is crucial.
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Knowledge gap 6: SOC and
Agronomic system approach

The investigation has identified following know-
ledge development gaps

There are several knowledge gaps on various as-
pects of agronomic practices for managing soil
organic carbon stocks in agricultural soils, and
long-term field experiments trying to elucidate
the effect of different soil management practices
on soil carbon stocks need long-term perspec-
tives (and appropriate financing possibilities).

Sustainable food production requires in-
creasing the productivity and efficiency of land,
water, and other inputs while reducing the envi-
ronmental impact and greenhouse gas emissions
of agriculture. Adopting regenarative agricultural
practices, such as reduced tillage, crop rotation,
cover crops, and intercropping, can enhance
SOC storage and restore soil quality, thereby
strengthening long-term food security. However,
the production benefits may not be apparent in
the short or medium term.

Growing cover crops where soil would oth-
erwise be bare has many benefits, including de-
creased NO - leaching over winter and reduced
soil erosion. However, their role in increasing
SOC may have limitations in many European sit-
uations. Where cover crops can be grown, they
may lead to some increase in SOC, though the
magnitude may be less than often assumed.
For example, a recent review calls into question
the often- quoted view that cover crops can in-
crease SOC by about 0.3 tC/ha/yr; see Chaplot
and Smith (2023). Additionally, cover crops may
contribute to increased nitrous oxide emissions
due to the accumulation of organic nitrogen in
the increased stock of soil organic matter (Guen-
et et al. 2021, Lugato et al. 2018).

The effects of tillage practices on SOC at
different soil depths are not uniform and depend
on various factors, such as soil type, climate, crop
type, tillage practices (e.g. no tillage to high in-
tensity, (Haddaway et al. 2017), tillage frequency
and bulk density (Fornara and Higgins 2022). For
example, a review of 351 studies from warm tem-
perate and snow climate zones, found that SOC
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was significantly higher in no tillage soils com-
pared to high intensity systems in the upper 30
cm soil layers, but no effect was found in the full
soil profile. The higher SOC in the top layer in no
tillage systems, however, may provide resilience
to extreme weather conditions though (Hadd-
away et al. 2017). A recent study from a mediter-
ranean climate, showed among other findings,
that tilled wheat had greatest soil C stabilization
at intermediate depts (30-60 cm), whereas no-
tilled wheat had highest carbon stabilization and
microbial biomass in the top-soil (0-30 cm) (Tay-
lor et al. 2024). The increased SOC stabilization
in topsoil was connected to better plant growth
at no-tillage in Mediterranean (rather dry) cli-
mates. A study by Fornara and Higgins (2022)
of 500 grassland fields in Northern Ireland, UK,
showed that C and N stocks (mg/ ha) in the top
30 cm were not affected by frequency of tillage
+ reseeding, as differences in bulk density levels
out the stock variation. Additionally, the risk of
dissolved reactive phosphorus losses increases
in no-till fields. The overall impact on water qual-
ity depends on the extent to which particulate
phosphorus losses are reduced, and the propor-
tion of that particle-bound phosphorus that be-
comes bioavailable once it enters surface waters
(Daryanto et al. 2017, Iho et al. 2023).

Crop rotationis animportant aspect of farm-
ing systems, but according to Land et al. (2017)
there are not many comprehensive studies de-
signed to unravel the effect of crop rotation on
SOC stocks. Calculations indicate that perennial
forages can increase below- ground SOC more
than the common crops, especially if crop resi-
dues are not returned, or if the perennial forages
are discontinued (Bolinder et al. 2012, Bolinder et
al. 2007, Land et al. 2017). Perennial crop seems
to increase the C storage and flux, more strongly
in shallow soil (0-15 cm) compared to deeper soil
layers (15-30 cm) (Means et al. 2022) in compar-
ison to annual monoculture crop.

The investigation has identified following bottle-
necks:

(i) Insufficient knowledge of how different soil

management strategies affect SOC seques-
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tration, greenhouse gas emissions, and nutri-
ent leaching, hinders development of integrat-
ed practices that balance productivity with
environmental sustainability.

(ii) Lack of comprehensive and harmonized data
on soil carbon stocks, degradation, and fer-
tility across regions, hinders accurate assess-
ment of soil conditions and targeted improve-
ment strategies.

(iii) Limited empirical evidence on how specific
agronomic practices influence SOC levels over
time, limits effective evidence-based recom-
mendations for sustainable farming systems.

(iv) Weak communication channels and limited
collaboration between researchers, policy-
makers, and land managers, limits adoption
and scaling of effective soil carbon manage-
ment practices.

(v) Absence of consistent methods for mea-
suring and comparing SOC outcomes across
studies and regions, hinders cross-compari-
son, policy alignment, and coordinated action
at national and EU levels.

Suggested actions include:

(i) More experimental research is needed to
study the impact of pedoclimatic conditions
and long-term dynamics of SMS on SOC and
emissions

(i) Developing models and monitoring programs
to better understand soil processes is crucial

(iii) Increase awareness among stakeholders
about the importance of SOC and sustainable
soil management practices

(iv) Enhance the role of intermediaries who can
effectively communicate research findings to
practitioners and policymakers

(v) Align research activities with the needs of
land users and ensure that findings are acces-
sible and applicable

(vi) Introduce financial incentives, such as subsi-
dies and payments for ecosystem services, to
encourage the adoption of sustainable prac-
tices, and probably very important

(vii) Encourage direct communication among
farmers and stakeholders to share experienc-
es and best practices.
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Knowledge gap 7: Urbanisation
and SOC

The investigation has identified following know-
ledge development gaps:

There is limited data on SOC storage in urban
areas, with high variability across land uses and
regions. The effects of different urbanization
pathways on SOC are poorly understood, and
accurate SOC stock estimations and integrations
into regional and national carbon budgets remain
challenging.

Urbanization is the process of transforming
rural areas into urban areas, which can have var-
ious effects on food production and SOC stocks.
Urbanization significantly alters land use pat-
terns, leading to changes in soil properties, and
SOC stocks vary widely across different urban
environments (e.g., parks, sealed surfaces, green
spaces). Furthermore, urban soils face unique
challenges due to compaction, pollution, and lim-
ited space. Urban systems involve material flows
(e.g., waste, organic matter) that impact SOC dy-
namics. Thus, integrating soil health and carbon
sequestration goals into urban planning and pol-
icies will be challenging. In view of the need for
housing increased populations in many European
countries, some loss of agricultural land due to
urbanization seems inevitable. Generally, there is
a major conflict of interest between urbanization
and the protection of productive soil. High quality
soil for agriculture is a non-renewable resource
since it takes centuries to build up few centime-
tres of productive soil. The conversion of agricul-
tural land to urban land is de facto an irreversible
process (Amundson et al. 2015), as new use may
decrease the land’s ability and capacity to supply
food and other vital ecosystem services (Tan et
al. 2009). Historically, urbanization has occurred
close to our most productive farmland (Ferrara
et al. 2014), and most remaining farmland is lo-
cated close to urban settlements. Thus, urban
sprawl is consuming fertile agricultural land for
urban use worldwide (Skog and Steinnes 2016).
How to combine increased food production and
soil organic matter conservation with increased
urbanization and high pressure on productive ag-
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ricultural land, i.e., multifunctional land use, is a
challenge. The EU commission has onset sever-
al strategies, such as the biodiversity long-term
plan to protect nature and reverse the degrada-
tion of ecosystems. The strategy aims to put Eu-
rope’s biodiversity on a path to recovery by 2030
(Eu comission 2020), to protect and restore soils,
and ensure that they are used sustainably and fi-
nally the ,science for Environment Policy: No net
land take ,, future brief, to outline what measures
can avoid, reduce or compensate for land take
(EU comission 2016).

The investigation has identified following bottle-
necks:

(i) SOC stocks vary widely across urban land
uses, and the effects of urbanization path-
ways on SOC, are poorly understood. This
limits accurate assessment and integration of
urban SOC into carbon budgets and climate
strategies.

(i) Urbanization often targets fertile agricultural
land, leading to irreversible soil loss and re-
duced capacity for food production and car-
bon storage. This undermines long-term food
security, ecosystem service provision, and
sustainable land use planning.

(iii) Soil health and carbon sequestration goals
are not systematically incorporated into ur-
ban development policies. This restricts mul-
tifunctional land use strategies that balance
housing, food production, and environmental
sustainability.

(iv) Urban soils face unique challenges such
as compaction, pollution, and limited space,
which affect their ability to store carbon and
support ecosystem functions. This limits ef-
fective use of urban green spaces for climate
mitigation and biodiversity enhancement.

Suggested actions include:

(i) Implement soil and land-use management
practices that enhance SOC stocks and sup-
port ecosystem services in urban areas

(i) Increase efforts to collect and analyse SOC
data across various urban land uses and re-
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gions to improve accuracy in SOC stock esti-
mations

(iii) Encourage the development of urban green
spaces, such as parks and gardens, which
have been shown to retain higher SOC stocks
compared to other urban land uses

(iv) Adopt strategies to control urban sprawl and
promote resource-efficient land use, which
can help mitigate the negative impacts on
SOC stocks

Knowledge gap 8: Education and
awareness raising on SOC

The investigation has identified following know-
ledge application gap:

The main knowledge gap in Europe concerning
the importance of SOC, particularly in education
and awareness, lies in the effective communica-
tion and application of existing research to prac-
titioners and the public. This disconnect limits
the adoption of sustainable soil management
practices essential for climate change mitigation
and soil health.

Awareness of soil health's importance has
grown in recent years. Initiatives like the PREP-
SOIL project contribute to the Soil Mission by en-
hancing knowledge and awareness of soil needs
among stakeholders across Europe. Such proj-
ects address the critical need to educate diverse
audiences on the role of soil organic carbon con-
servation in sustaining life and natural resources,
from individuals to society as a whole. Despite its
significance, soil remains widely under-commu-
nicated, including within educational institutions
at all levels. This highlights the clear connection
to the eighth mission objective on soil literacy,
which emphasizes both general soil health and
the importance of its carbon stocks.

Soil C storage refers to an increase of soil C
stocks, while soil C sequestration implies a net
removal of atmospheric CO,. However, these
terms are often used interchangeably or ambig-
uously, which can cause confusion and misun-
derstanding among different stakeholders and
audiences. Recently, Janzen (2024) published
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an important adjustment in how we should ap-
preciate SOC, which is easily under communi-
cated in the discussion about conserving and
increasing SOC: Rather than using the term
‘sequestration, we might instead speak of SOC
‘stewardship,” which captures the full range of
SOC rather than just a narrowly defined ‘stable’
or ‘persistent’ fraction. This shift in perspective
could reshape research questions, for example,
is long-term stability necessary for SOC to ef-
fectively store excess atmospheric CO,? ‘Stew-
ardship’ recognizes the continuous cycling of
SOC, emphasizing the need to manage both
stored carbon and the ongoing flows that sus-
tain ecosystem functions.

Therefore, it is crucial to promote education
and awareness not only about soil quality and
health but also about the global benefits of ef-
fective SOC management, particularly in climate
change adaptation and sustainable food secu-
rity. There is a need to improve fellow citizens,
land managers, politicians and policymakers
common understanding of SOC dynamics and its
central role. Communicating this has been chal-
lenging, partly due to the complexity of organic
C composition and its dynamic behaviour in soil,
as well as its connections to key soil functions
such as structure, biodiversity, and elemental
cycles (Chenu et al. 2019).

The knowledge gaps on communicating the
role and importance of SOC to society and its
role in providing and sustaining a number of the
soil ecosystems, seems to be mostly related to
communication and suitability of soil data man-
agement. There is a lack of comprehensive mod-
els and monitoring programs to address the loss
of SOC in various systems, and its importance
for water infiltration and reducing soil compac-
tion for instance (Thorsee et al. 2023). Moreover,
there is a need to clearly differentiate between
SOC storage and sequestration, as they have
different implications for climate change adap-
tation and mitigation (Chenu et al. 2019, Janzen
2024), and stakeholders have varying percep-
tions of soil quality and functions, indicating a
need for regionally relevant advice and credible
information on sustainable management practic-
es (Bampa et al. 2019).
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The investigation has identified following bottle-
necks:

(i) Existing SOC knowledge is not effectively
communicated or applied by practitioners and
the public. This limits the adoption of sustain-
able soil management practices and climate
mitigation strategies.

(i) SOC and soil health are underrepresented in
education and public discourse. This weakens
societal understanding of soil’s role in climate
adaptation, food security, and ecosystem ser-
vices.

(i) Terms like “SOC storage” and “sequestra-
tion” are often used interchangeably, leading
to misunderstanding. This creates confusion
in communication, policy development, and
alignment of research and management goals.

(iv) Stakeholders have diverse perceptions of
soil quality, and there is limited access to tai-
lored, trustworthy information. This reduces
the effectiveness decision-making and adop-
tion of context-specific sustainable practices.

(v) There is a lack of comprehensive models and
monitoring systems to track SOC loss and its
impact on soil functions. This undermines ev-
idence-based policy, long-term planning, and
evaluation of soil management outcomes.

Suggested actions include:

(i) Enhancing the role of intermediaries who can
translate scientific findings into practical ad-
vice for land users,

(ii) Encouraging communication among farmers
and stakeholders to share best practices and
experiences,

(iii) Providing tailored advice and information
that considers local environmental and so-
cio-economic conditions,

(iv) Raising awareness about the importance of
SOC and strengthening educational programs
are essential. This includes providing credi-
ble information and locally relevant advice to
stakeholders,

(v) Funding for applied research, and support for
training programs can encourage the adoption
of sustainable practice.
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Knowledge gap 9: Forest
management and SOC

The investigation has identified following know-
ledge development gap:

The main research gap in forest SOC manage-
ment is understanding how different practices
impact SOC stocks and interact with environ-
mental factors like climate change. Addressing
this requires site-specific studies, large dataset
integration, and comprehensive management
frameworks.

Forest soils store almost half of the total
organic C in terrestrial ecosystems, and forest
management practices can influence the rates
of input or release of C from soils (Mayer et al.
2020, Makipaa et al. 2023, Ontl et al. 2020). An
important factor for soil C stocks, for Europe
and globally, is to maintain existing forest cov-
er and avoid its removal or degradation. Forest
management can have various objectives, such
as timber production, biodiversity conservation,
recreation, C sequestration, and other ecosys-
tem services. It is, however, likely that, in many
forest situations, the main societal goal will be
habitat for wildlife with managements being tai-
lored for different species in different situations.
Forest management require thus a holistic ap-
proach serving several ecosystem services oth-
er than simply exploring its potential in storing
soil C. Consideration of C stocks will thus be a
secondary factor. Many factors influence the
interactions between forest management and
SOC stocks, such as forest type, disturbance,
soil type, climate, time (Ahmed et al. 2012, Jandl
et al. 2021) and the carbon use efficiency (CUE;
Qiao et al. 2019, Tao et al. 2023). Boosting SOC
stocks addresses several key questions and
considerations. Clear-cutting in Nordic and Ca-
nadian forests leads to a significant, decadal
decline in forest floor SOC (Johannesson et al.
2025). This decline persists for many years af-
ter harvesting, highlighting a long-term impact of
clear- cutting on forest soil carbon storage. The
decline is most pronounced in the organic layer
(forest floor), while the mineral soil shows little
to no significant change in SOC stocks. The loss
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of SOC is attributed to increased decomposition
rates and reduced litter input following the re-
moval of trees. SOC in the forest floor may begin
to recover several decades after clear-cutting,
but full recovery to pre-harvest levels can take
30-50 years or more (Clarke et al. 2021).

Several studies underscore the need for
sustainable management practices and inno-
vative solutions to meet the growing demand
for timber and forest waste as bioenergy in
the context of climate change. The demand for
wood-based energy is expected to increase, but
the C impacts of forest bioenergy are uncertain
(Giuntoli et al. 2020). Forest residues can also
be used for biochar production, with substan-
tial climate benefits even after all environmental
costs associated with production and applica-
tion are discounted through life cycle analysis
(Tisserant et al. 2022). This is further compli-
cated by the potential effects of climate change
and air pollution on forest productivity and C se-
questration (Matyssek et al. 2012). The removal
of forest residues for bioenergy could also have
negative consequences for how forest systems
provide and sustain their ecosystem services
(Clark 2012).

There is a need for advanced modelling
techniques like boosted regression trees (BRT)
and other machine learning models can im-
prove SOC stock estimates by identifying key
predictors such as groundwater level, clay
fraction, and tree genus (Ottoy et al. 2017). In
addition geostatistical models, using climate
and land cover data, that can predict current
and future SOC stocks, providing insights into
how SOC might change under different climate
scenarios (Yigini and Panagos 2016). And sim-
ulation models which are used to simulate SOC
stocks and changes, offering a way to assess
the impact of land use and climate change on
SOC (Hernandez et al. 2017). Complementary
to this, future climate scenarios suggest vary-
ing impacts on SOC stocks, with potential in-
creases or decreases depending on the region
and forest type. Models should be developed
to predict an overall increase in SOC stocks in
Europe by 2050 under various climate scenar-
ios (Yigini and Panagos 2016). Advancing SOC
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research and management through modelling,
forest practice analysis, and climate adapta-
tion can improve implementation, leading to
better predictions and conservation strategies
in European forests.

The investigation has identified following bottle-
necks:

(i) Forest management often prioritizes biodi-
versity, timber, or recreation over soil carbon
storage, and SOC is frequently treated as a
secondary consideration. This limits the inte-
gration of SOC conservation into forest policy
and practice, reducing the potential for forests
to contribute to climate mitigation.

(i) Practices like clear-cutting and residue re-
moval for bioenergy can lead to long-term
SOC losses, especially in the forest floor layer.
This limits the long-term stability of forest soil
carbon stocks and the sustainability of bioen-
ergy strategies.

(iii) Despite the availability of advanced model-
ling tools (e.g., machine learning, geostatis-
tics, simulation models), they are underuti-
lized in forest SOC assessments. This limits
accurate prediction of SOC changes under
different management and climate scenari-
os, hindering informed decision-making and
adaptive forest planning.

Suggested actions include:

(i) Utilize large observational databases and me-
ta-analyses can help synthesize existing data
and provide a clearer picture of SOC dynam-
ics across different regions and management
practices.

(i) Creating comprehensive classifications and
thesauri, like DATA4C+, can help standardize
the description of management practices and
improve the quality of meta- analyses, aiding
in the identification of effective SOC manage-
ment strategies.

(iii) Research should prioritize understanding
how climate change scenarios affect SOC, as
these changes pose significant risks to SOC
stocks, particularly in temperate forests.
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Knowledge gap 10: EU footprints
of soil carbon outside Europe

The investigation has identified following know-
ledge development gap:

The main gap in understanding European impacts
on global SOC stocks is the lack of comprehen-
sive monitoring of how European consumption
and land use affect SOC worldwide. This is com-
pounded by insufficient data on environmental
factors influencing SOC storage and the effects of
trade and consumption patterns outside Europe.

The import of food and fiber into Europe has
a complex and varied impact on SOC stocks in
soils outside of Europe. Frank et al. (2015) found
that changes in SOC stocks depend on manage-
ment regime and environmental factors, with a
potential for carbon sequestration in European
cropland. However, if C sequestration as opposed
to food production is prioritized in Europe, this
would lead to increased imports of food. Much
being likely to be grown on recently cleared land
elsewhere in the world with the resulting loss of
SOC, and increased CO emissions, in those re-
gions. For instance, if organic farming increas-
es, this may come at the expense of SOC loss
at another site (Gaudaré et al. 2023). To improve
our understanding of SOC stock outside Europe,
standardized estimation methods, comprehen-
sive data sets, and accurate mapping techniques
is needed (Aksoy et al. 2016, Lorenz et al. 2019,
Lugato et al. 2018, Wiesmeier et al. 2012).

There is a need for improved methodolo-
gies to monitor and identify environmental fac-
tors that control SOC storage, as current models
often rely on geographically non-stationary pro-
cesses that vary by location (Rial et al. 2017). And
the role of European consumption in driving SOC
changes outside Europe is not well understood,
particularly how trade and consumption patterns
contribute to SOC losses in other regions (Wilt-
ing et al. 2021). Addressing knowledge gaps on
European impacts on global SOC stocks requires
improved monitoring, policy integration, and
data standardization to better understand SOC
dynamics and reduce the effects of European
consumption on global soil C.
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The investigation has identified following bottle-
necks:

(i) Prioritizing carbon sequestration in Europe may
lead to increased food and fiber imports from
regions where land is cleared for agriculture,
causing SOC loss and CO, emissions abroad.
As a result, the global climate benefits of Euro-
pean SOC strategies may be undermined, shift-
ing environmental burdens to other regions.

(ii) There is a shortage of standardized methods,
comprehensive datasets, and accurate map-
ping techniques for assessing SOC stocks out-
side Europe. This gap hampers reliable global
assessments of SOC dynamics and weakens
the ability to track the external impacts of Eu-
ropean consumption.

(iii) The role of European trade and consumption
in driving SOC changes in other regions is not
well understood. This lack of insight constrains
informed policymaking and the integration of
global SOC considerations into European sus-
tainability and trade strategies.

The actions include:

(i) Enhance the integration of research findings
into policymaking to address the impacts of
European consumption on global SOC stocks.
This includes considering trade impacts in na-
tional and regional policies

(i) Promote standardization in SOC measure-
ment and data sharing across countries to im-
prove the accuracy of SOC assessments and
facilitate better policy decisions

(iii) Implement incentives for sustainable soil
management practices that enhance SOC se-
questration, such as carbon credits and other
financial mechanisms.

Summarisation of prioritized
knowledge gaps

An overview table of the prioritized knowledge
gaps, their sector impact, bottlenecks and sug-
gested actions can be found under Suppl. ma-
terial 1.
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Introduction

The third specific objective of the Soil Mission
is to achieve “no net soil sealing and increase
the reuse of urban soil” (European Commission:
Directorate-General for Research and Innova-
tion 2022 p. 16). Soil sealing is considered as
the main process that causes land degradation

in urban areas (European Environment Agency
et al. 2022). When soil is sealed, an imperme-
able layer interrupts the connection between
the soil and the atmosphere, leading to the loss
of soil resources, biodiversity, and ecosystem
services. The process of soil sealing is strictly
linked to land take, i.e. the conversion of natu-
ral and semi-natural land into artificial land (see
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definitions in Table 1). The Soil Mission imple-
mentation plan estimates that the area with poor
soil health due to soil sealing is probably <1% of
EU land, but can be as high as 2.5%. These fig-
ures are based on the assumption that sealed
areas represent around 50% of artificial areas,
which cover 4.2% of the EU. Locally, sealed sur-
faces can reach very high levels, with some ar-
eas exhibiting rates as high as 70% (Decoville
and Feltgen 2023). Both soil sealing and land
take have been steadily growing during the last
decades (European Environment Agency et al.
2022). Between 2000 and 2018, artificial areas
expanded by 71%, with net land take averaging
440 km?/year between 2012 and 2018, primari-
ly at the expense of arable lands, pastures, and
grasslands. Concerning the second part of the
objective, soil reuse refers to the use of excavat-
ed soil from construction sites for other purpos-
es (Reicosky and Wilts 2005). In many Europe-
an countries, excavated soils are still classified
as waste, contributing over 520 million tonnes
to the total waste generated in the EU in 2018
(Scialpi and Perrotti 2022).

The European Commission proposal for a
Directive on Soil Monitoring and Resilience draft-
ed in 2023 and currently under trilogue negotia-
tions, aims to specify the conditions for healthy
soils and to lay out regulations to promote sus-
tainable soil use and restoration. The proposal
includes mandatory monitoring of land take and
soil sealing by Member States, to be conducted
according to a common framework of indicators
and methodological criteria (). The proposed in-
dicators include total artificial land; land take, in-
cludingreverse land take (i.e., the renaturalization

Table 1. Definitions.

Soil is the upper layer of the earth in which plants grow (Nougues and Brills 2023).

of previously developed land); net land take (i.e.,
total minus reverse land take); and soil sealing.
Member States may also measure optional indi-
cators such as land fragmentation, land take for
specific uses, and impacts on ecosystem ser-
vices. According to the Commission’s proposal,
the monitoring of soil sealing and land take in-
dicators should be conducted at least annually.

The “no net soil sealing and increase the re-
use of urban soils” objective is linked to several
other strategies, goals, and targets of the EU, in-
cluding those of the Roadmap to a Resource Effi-
cient Europe () (which included especially the no
net land take by 2050 target), the EU Biodiversity
Strategy to 2030 (), the Nature Restoration Reg-
ulations (), and the EU Action Plan “Towards Zero
Pollution for Air, Water and Soil” (). Achieving “no
net soil sealing and increase the reuse of urban
soil” would also contribute to other EU Missions
and related policy areas, such as Oceans, Seas
and Waters (management of water quality and
quantity in urban areas), Adaptation to Climate
Change (flood mitigation), and Climate Neutral
and Smart Cities (climate mitigation and resource
efficiency). In addition, the objective is directly
linked to several targets of SDG 11 - Make cities
and human settlements inclusive, safe, resilient
and sustainable and SDG 15.3 — End Desertifica-
tion and Restore Degraded Land.

This document provides an overview of the
state of knowledge related to this objective, by
identifying specific knowledge gaps, actions to
address them and potential bottlenecks. This
document was prepared by the members of the
“Soil sealing and urban soils” Think Tank within the
SOLO project, through the process illustrated in.

Land is the ground, including the soil covering and any associated surface water, over which ownership rights are enforced (Nougues and Brills 2023).

Soil sealing is the loss of soil resources (nutrients and moisture) due to the covering of the soil surface with impervious materials, as a result of urban
development and infrastructure construction (https://esdac.jrc.ec.europa.eu/themes/soil-sealing).

Land take is the conversion of natural and semi-natural land into artificial land (Soil Monitoring Law - Article 3 (European Commission: Directorate-General for

Environment 2023). Land take is a process that transforms natural and semi-natural areas (including agricultural and forestry land, gardens and parks) into artificial
land (e.g., residential and industrial areas), using soil as a platform for construction and infrastructure as a direct source of raw material, or as an archive for historic
patrimony. This transformation may cause the loss, often irreversibly, of the capacity of soils to provide other ecosystem services (provision of food and biomass,
water and nutrients cycling, basis for biodiversity and carbon storage). (Soil Monitoring Law - Preamble (30), European Commission: Directorate-General for
Environment 2023).

Soil reuse involves the repurposing of excavated soil from construction sites, which may be reused on-site or off- site, taking into account its characteristics and
ensuring that they are compatible with the new soil application (Hale et al. 2021).

Land recycling is defined as the reuse of abandoned, vacant or underused land for redevelopment (European Environment Agency 2021).
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Figure 1. Timeline and main activities of the “soil sealing and urban soils” Think Tank.
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State-of-the-art

Fig. 2 illustrates the link between the two top-
ics that form the objective, namely soil sealing
and soil reuse. The next sub-section presents an
overview of the state of the art for each of them.

Soil sealing

Despite being among the human activities with
the greatest impacts on soil, data on sealing at
the European level were lacking for a long time.
In the past three decades, the extent of soil seal-
ing has been estimated based on land take data,
also reflecting the greater policy attention ded-
icated to the latter process, for which the “no
net” target had been proposed already in 2011
(European Commission 2011).

At the EU level, the main land uses that
generated land take during 2000-2018 were in-
dustrial and commercial, as well as extension of
low-density residential areas and construction
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sites (European Environment Agency 2019).
Most of the new land take was at the expense
of agricultural soils, often highly fertile soils lo-
cated in flat areas where cities have historically
developed. As a result, the negative effects on
ecosystem services are significant (European
Environment Agency et al. 2022). More detailed
data on land take and net land take are available
at the level of individual cities and commuting
zones based on the Urban Atlas database, which
provides high-resolution land use land cov-
er maps of 788 Functional Urban Areas (FUA),
i.e. cities and related commuting zones, across
Europe (European Environment Agency 2023).
However, the fact that this database does not
cover the area outside functional urban areas of
the EU limits its application for large scale (na-
tional and continental) monitoring.

In 2018, the Copernicus Land Monitoring
Service (CLMS) released the Imperviousness
Density (IMD) layer, a high-resolution raster map
capturing the spatial distribution and changes of
artificially sealed areas across the EEA-38 coun-
tries and the UK. While the IMD maps provide a
homogeneous dataset for assessing soil sealing
at the EU level, the change from the 20m resolu-
tion of the older maps (2006-2015) to the 10 m
resolution of the newer maps (starting 2018) dis-
rupted the consistency of the temporal series.
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The CLMS has recently released a harmonised
IMD time series that overcomes the challenge
of the mentioned resolution change and docu-
ments sealed cover evolution in a robust way. In
addition to the IMD series, CLMS has produced
the CORINE Land Cover (CLC) + Backbone Ras-
ter dataset for the years 2018 and 2021, which
includes a thematic sealed class. The CLC+
Backbone represents a major improvement over
the previous CORINE Land Cover system, offer-
ing enhanced land cover classification into 11
basic categories and a more robust framework
for monitoring soil sealing across the EU (Mau-
cha et al. 2024). However, the temporal cover-
age is limited and discrepancies remain, as the
IMD dataset tends to underestimate sealed ar-
eas compared to CLC+ Backbone and reference
datasets (Sannier et al. 2024). Moreover, it is im-
portant to note that both datasets estimate seal-
ing based on remote sensing data. This data only
captures surface sealing and does not account
for underground structures, such as basements
and parking garages, because these are not vis-
ible through remote acquisitions. These types of
structures are common in urban areas and con-
tribute to the reduction of soil ecosystem ser-
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vices like water infiltration and purification (To-
bias et al. 2018).

The description of the specific objective of
“nonetsoil sealingandincrease thereuse of urban
soils” contained in the Soil Mission also mentions
the increase of land recycling activities (Europe-
an Environment Agency 2016). The term “land re-
cycling” refers to the reuse of previously built-up
or artificialised land (abandoned, vacant or un-
derused land) for redevelopment. Land recycling
was captured by one of the indicators developed
by the EEA to monitor specific processes linked
to land take. The land recycling indicator includes
three components: “green recycling”, “grey recy-
cling”, and “densification” which were assessed
for the first time by the EEA in 2016 based on
Urban Atlas data. Densification is defined as
“land development within existing urban areas
that makes maximum use of the existing infra-
structure” (European Environment Agency 2021),
thus minimising new land take and soil sealing.
Between 2006 and 2012 densification accounted
for the largest proportion of land recycling (9% of
total land consumption*). Grey recycling, i.e., the
internal conversions between residential and/or
nonresidential land cover types, was secondary
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to densification (3.2% of total land consumption),
with country rates ranging from 14% of total land
consumption in Latvia to less than 1% in Slova-
kia, Slovenia, Luxembourg, and Lithuania. Green
recycling, i.e., the development of green urban
areas on previously built-up areas, including de-
sealing activities, was a marginal process in all
countries and, on average, accounted for only
0.2% of total land consumption between 2006
and 2012. The monitoring of these indicators by
the EEA was discontinued, so more recent fig-
ures are not available. The Soil Mission has set a
target of exceeding the value of 13% for land re-
cycling. This figure refers to the period of 2006-
2012, when land recycling contributed only 13%
of the total land use changes involving urbanised
areas in European FUAs.

The gaps identified in addressing soil sealing
and land take highlight the necessity for cohesive
and effective policies. Challenges include frag-
mented legal systems, as well as the difficulties
in designing and implementing regulatory, fiscal,
and incentive-based instruments (Ronchi et al.
2019). Urbanisation continues to cause land take,
impacting biodiversity and ecosystem services.
Public acceptance of no net soil sealing policies
is hindered by limited awareness of soil functions
and trade-offs between environmental goals and
material welfare (Teixeira da Silva et al. 2018), with
policies often overlooking socio-economic effects
like housing affordability, urban congestion, and
inequalities between landowners and non-own-
ers (Vejchodska et al. 2022). There is a need for
tools to support a better integration of soil health
and soil ecosystem services into spatial planning
processes (Calzolari et al. 2020), and of socially
balanced policy tools to achieve the no net soil
sealing target in a sustainable and equitable way.

Urban soil reuse

In most countries, soil excavated from construc-
tion sites is currently considered as waste and
disposed in landfills, which makes it the biggest
source of waste in the EU (more than 520 mil-
lion tons only in 2018) (Scialpi and Perrotti 2022).
To reduce this trend, the Soil Strategy aims to
investigate the streams of excavated soils and
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considers proposing a “soil passport”, on the
model of existing digital tools to track soil reuse
in some EU countries (e.g., in Belgium and under
development in France) (SOILveR (Soil and land
research funding platform for Europe), 2022).
These tools are sometimes also called or linked to
‘soil banks’, whose aim is to reconcile supply and
demand of surplus soil from construction sites.
The legal frameworks on excavated soils
and their potential reuse differs across Member
States (European Commission: Directorate-Gen-
eral for Environment et al. 2024). In some coun-
tries, reuse is encouraged and even enforced for
certain soils of high agricultural value. In other
countries, reuse is allowed under certain condi-
tions that usually refer to the quality of the soiland
sometimes set temporal and spatial boundaries
for the new application (e.g., in Sweden, reuse is
allowed only on-site and within a reasonable pe-
riod of time) (Hale et al. 2021). Often, additional
permits or licenses are required, which impose a
burden on reuse activities (Hale et al. 2021).
The management of excavated soils and
their potential reuse is strictly linked to the issue
of pollution (addressed by the fourth specific
objective of the Soil Mission), although only part
of excavated soil is polluted. While potentially
contaminated sites in EEA-39 amount to 2.8 mil-
lion, diffuse pollution (including pollution due to
microplastic) could be a major problem in urban
soils, whose impacts are still largely unknown.
Beyond these general issues, other local issues
may emerge in specific contexts as an effect of
the high levels of soil sealing and associated an-
thropic activities and management practices, in-
cluding compaction, erosion, and other types of
concentrated pollution, which may affect urban
soils in different ways compared to natural soils.
A detailed knowledge of the quality of soils,
not only in terms of contamination levels but also
in terms of geotechnical properties, is a prereq-
uisite for safe reuse (Hale et al. 2021). The cur-
rent level of knowledge on urban soils is general-
ly poor, also due to the high spatial variability of
their properties (Pouyat et al. 2020). The LUCAS
topsoil survey is the only database that provides
soil properties from samples collected across
the EU (Eurostat 2018), although it is important
to note that the parameters measured in urban
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areas differ from those assessed in other land
use categories. The Soil Monitoring Law includes
measures to enhance the role of LUCAS by in-
creasing the density of sampling points. Howev-
er, more and more databases of urban soil quali-
ty are being developed at the regional level (e.qg.,
the GeoBaPa in the Regions lle de France and in
Normandy, or similar examples in various Lander
in Germany) and even at the national level (e.g.,
BDSolU in France).

Prioritisation of knowledge
gaps

The initial list of knowledge gaps in the Suppl.
material 1 was developed through a scoping re-
view of relevant literature and refined through
discussions within the Think Tank. Once con-
sensus had been reached, a two-round prioriti-
sation exercise was conducted. During the gen-
eral project meeting in Sofia, Bulgaria (November
2024), Think Tank participants voted on the ten
most relevant gaps. In the first round, all meet-
ing attendees, including members from all SOLO
Think Tanks, selected their top three gaps from
this list. A second round was later conducted
online to include those who were unable to at-
tend in person. Final scores were calculated by
summing the votes from both rounds. Table 2
presents the top 10 gaps. The following section
details the state of the art for the top three gaps
and provides an overview of the other priority
gaps identified by the Think Tank members.

Roadmap for “No net
soil sealing and increase
the reuse of urban soils”
Think Tank

Key knowledge gaps

New policy approaches and
instruments to reduce soil sealing

At the city level, the issues of soil sealing and
land take are primarily addressed in spatial plan-
ning processes. During these processes, goals
and strategies for urban development are de-
fined and policy instruments are identified to im-
plement them. Policy instruments at the city lev-
el can be broadly categorised into binding and
non-binding instruments. Binding instruments
include specific regulatory measures such as
quantitative soil sealing targets, restrictions on
developing existing green areas, zoning of agri-
cultural priority areas, and limitations on specif-
ic types of developments. For instance, zoning
regulations typically establish acceptable limits
on soil sealing for different land uses and im-
plement enforceable rules to safeguard natural
resources (Redon and Mialot 2024). A relevant
example can be found in the city of Eindhoven,
which introduced the new Environmental Plan-
ning Act, known as the ‘Omgevingswet, in 2019.
Non-binding instruments include, among oth-
ers, strategic planning documents, and incen-

Table 2. Ranking of the top 10 knowledge gaps identified (a full list of all identified knowledge gaps is given in the Suppl. material
1). Type of knowledge gap: KDG = knowledge development gap, KAG = knowledge application gap.

m Knowledge gap Type of knowledge gap

1 New policy approaches and instruments to reduce soil sealing KDG
2 Best practices to promote the reuse of urban soils from construction sites KAG
3* Effectiveness of desealing interventions KDG
3* Legal and regulatory dimension of soil sealing KDG
5 Socio-economic impacts of no net soil sealing policies KDG
6 Minimum unsealed soil per person to ensure biodiversity and human health in urban areas KDG
7 Drivers of soil sealing from individual to sectoral policies KDG
8 Typologies of soil sealing and their impact on soil functions and services KDG
9 Acceptability and legitimacy of no net soil sealing policies KDG
10 Links between soil sealing and land take KDG
80 SOLO Outlook 2025
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tive-based instruments designed to guide and
encourage sustainable land use without impos-
ing mandatory requirements (Naumann et al.
2018). The implementation and effectiveness
of instruments can differ due to various factors
such as bureaucratic complexity, inadequate
monitoring, limited human or financial resources,
conflicting interests, counter-incentives, lack of
enforcement, political issues, and the absence of
regional contextualisation.

Across Europe, the presence and enforce-
ment of land take policies vary significantly.
Countries such as Estonia, Poland, and Czechia
lack explicit policies limiting land take. In con-
trast, Germany, ltaly, Belgium, and Switzerland
have adopted national goals, which are then
implemented at the regional level. However, in
Italy and Germany, these goals are not legally
binding but instead serve as aspirational targets
(D'Ascanio et al. 2024). France set national goals
of a 50% reduction in all the land use process-
es occurring on or ending up in developed land,
which apply to the whole of France and uniformly
to each region and Luxembourg set these goals
at the local level. Generally, reducing land take
is a widely debated topic, while soil sealing has
emerged more recently (D’Ascanio et al. 2024).
Few countries have adopted fiscal policies to
prevent soil sealing, and those that have imple-
mented these measures typically sets uniform
thresholds without consi dering the local context,
thereby undermining the policy’sits effectiveness
(Ronchi et al. 2019). Instruments based on finan-
cial charges or incentives are rare and, when in-
troduced, are seldom applied comprehensively
(Vejchodska and Pelucha 2019). For example,
Austria and Germany provide financial incentives
for the reuse of brownfields and for desealing
measures. Belgium has introduced fiscal mea-
sures that incentivise demolition and reconstruc-
tion projects to encourage urban regeneration.
Similarly, the French government has established
a “brownfield fund” to financially support both
private and public redevelopment of brownfield
sites (D’Ascanio et al. 2024). In the United King-
dom, authorities are actively promoting the eco-
nomic redevelopment of brownfield sites for res-
idential purposes while also allowing controlled
development on greenfield sites (Build Europe
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2022). Although these measures show potential,
their scale and scope remain limited, restricting
their broader impact. This underscores the ur-
gent need for more tailored, evidence-based pol-
icy instruments that address local environmental,
social, and economic conditions.

A key principle in designing land policy in-
struments should be the mitigation hierarchy,
which prioritises actions based on their impacts.
The hierarchy includes a sequence of approach-
es, ranging from avoidance of land take and soil
sealing to mitigation of their effects, and final-
ly to compensation and restoration of degraded
land (European Commission: Directorate-General
for Environment 2021). Ideally, policy instruments
should be aligned with this hierarchy to achieve
specific outcomes (European Commission: Direc-
torate-General for Environment 2012). Particularly:

e Avoidance: instruments aimed at avoiding
land take should focus on preventing new
greenfield developments. Protective mea-
sures, such as zoning agricultural priority
areas or imposing restrictions on greenfield
developments, are crucial in achieving no
net land take.

» Mitigation: policies that mitigate the neg-
ative impacts of soil sealing, such as re-
quirements for permeable surfaces in urban
areas or water management systems, help
address the environmental consequences
of urbanisation.

o Compensation: instruments designed to re-
store land and ecosystems, such as manda-
tory reforestation.

o Offset (compensation): redevelopment of
abandonedurbanareasintonew greenareas
can compensate for unavoidable impacts.

Effective policies should align with the
mitigation hierarchy to balance development
needs and environmental sustainability. For in-
stance, development instruments should prior-
itise grey and green recycling and brownfield
redevelopment to achieve 100% land recycling
in the long-term, minimising the need for new
greenfield projects (Lacoere and Leinfelder
2023). To achieve the ambitious no-net targets,
a single instrument is insufficient, and a policy

81



Silvia Frezzi et al.: Outlook on the knowledge gaps to reduce soil sealing and increase the reuse of urban soil

mix of various instruments is necessary (Spyra
et al. 2025). There is a lack of integration among
different policy instruments.

Designing effective land policy instruments
is a complex process, requiring innovative ap-
proaches that balance competing public and
private interests. One such approach could be
the combined use of compensation and incen-
tive mechanisms. These mechanisms address
both the costs of inaction (push factors) and the
benefits of sustainable soil use (pull factors),
creating a dual approach to promote better land
management. For example, developers could
be required to compensate for soil sealing by
investing in restoration projects, while also re-
ceiving incentives for adopting sustainable prac-
tices. Another innovative approach involves in-
tegrating soil functions and ecosystem services
into the assessment of compensation measures
(Calzolari et al. 2020), thus making explicit the
value of soil and of its ecological benefits. For
instance, incentives could be linked to preserv-
ing or enhancing ecosystem services such as
carbon storage, water filtration, or biodiversity
(Jost et al. 2021). By valuing these services, pol-
icies can encourage sustainable soil use while
discouraging practices that degrade soil quali-
ty. Tradable permits could also be considered a
promising economic policy instrument aimed at
reducing land take, still lacking large scale imple-
mentation (Henger et al. 2023).

The specific questions associated with this
gap are:

1. What types of policy instruments proved
to be effective in supporting the no net soil
sealing target in different contexts?

2. What innovative instruments and policy
mixes can be designed to achieve the no
net soil sealing target?

Best practices to promote
the reuse of urban soils from
construction sites

In a rapidly urbanising world, the importance
of urban soil quality has grown significant-
ly (Burghardt et al. 2022, Lehmann and Stahr
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2007). Soil quality refers to the capacity of soil
to function within ecosystems, supporting bio-
logical productivity, maintaining environmental
quality, and promoting the health of plants, an-
imals, and humans (Tresch et al. 2018). Urban
soils, however, differ substantially from natu-
ral soils due to their altered physical, chemical,
and biological characteristics caused by human
activities (Kim et al. 2021, Pavao-Zuckerman
2008). Rapid urbanisation increases construc-
tion and demolition activities, generating large
volumes of excavated soil (Hale et al. 2021). An
example of these activities is road construction.
Between 2012 and 2018, 189 km? of agricultural
and natural land was converted in the EU for the
expansion of the transport network (Damme and
Keller 2023). The reuse potential of excavated
soils depends on their geochemical compatibility
with the receiving site (Sauvaget et al. 2020).

The excavated soils that cannot be reused
on-site are classified as waste and managed
under national policies. Member States have
developed distinct regulations for the reuse
of soil, leading to significant variation across
countries. For example, in France, guidelines
require contamination assessments for exca-
vated soils. If the soil is contaminated, it must
be treated or transported as waste. Non-con-
taminated soils, however, can be reused pro-
vided they meet geotechnical requirements.
In Norway, surplus excavated soil is also clas-
sified as waste, with threshold values used
to distinguish clean from contaminated soils.
Sweden, by contrast, does not classify exca-
vated soil as waste if it is reused on the same
site within a reasonable timeframe (Hale et al.
2021). Despite these efforts, there is no unified
European framework with standard regulations
and threshold values for excavated soils, leav-
ing soil reuse to be governed by national poli-
cies (Blanc et al. 2012, Hale et al. 2021).

The European Soil Strategy (European
Commission: Directorate-General for Environ-
ment 2021) has proposed investigating exca-
vated soil streams and assessing the feasibility
of a “soil passport” or digital tracking system
to enhance circular economy efforts. This ini-
tiative aims to promote the safe reuse of clean
soils in all Member States. Some countries
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have already implemented soil passport sys-
tems. For example, Flanders in Belgium has
incorporated soil passports into its contamina-
tion legislation, while Austria operates a similar
system. In France, a national regulatory trace-
ability system is in place for excavated soils,
while in the UK, the Definition of Waste: Code
of Practice (DoW CoP) outlines processes for
reusing excavated materials on-site or moving
them between sites. Digital tools, such as the
TERRASS database, provide interactive online
systems for monitoring soil quality and reuse
(Blanc et al. 2012). However, there remains a
critical lack of standardised indicators, proto-
cols, methods, and tools for assessing urban
soil quality and tracking its movement, making
it difficult to implement these solutions (Llatas
2011, Ittner and Naumann 2022). In addition,
tools to analyse soil quality and monitor its
movement through a standardised “soil pass-
port” system are still underdeveloped (lttner
and Naumann 2022, SOILveR (Soil and land re-
search funding platform for Europe 2022).

Many European Member States have pro-
posed measures and set targets to increase the
recovery and reuse of construction and demoli-
tion waste, but these initiatives often lack clari-
ty regarding their implementation, especially for
excavated soils (European Commission: Direc-
torate-General for Environment et al. 2024). For
instance, Estonia has set a target of recovering
more than 75% of construction and demolition
waste, though it is unclear whether this includes
soil. Hungary is preparing legislation to estab-
lish a waste transfer system, which will include
collection points and incentives for reusing and
recycling construction waste. In Finland, the city
of Helsinki has initiated a project to optimise the
reuse of excavated soil within urban construc-
tion projects. While government-funded initia-
tives dominate efforts to promote soil reuse, the
private sector has started to contribute in some
cases, as demonstrated by the Helsinki project
(European Commission: Directorate-General for
Environment et al. 2024).

Despite progress, significant gaps remain in
the development of cohesive European policies
and best practices to promote soil reuse. The
limited coordination between
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Member States and the absence of har-
monised regulations exacerbate these chal-
lenges. Furthermore, current initiatives often
fail to account for local contexts, resulting
in less effective implementation. Address-
ing these issues requires a unified European
framework that includes standard guidelines
and evaluation metrics. To overcome these
challenges, it is crucial to implement evi-
dence-based, context-specific policies sup-
ported by robust tools and monitoring mech-
anisms. By promoting cohesive strategies,
fostering collaboration between the public and
private sectors, and raising awareness of the
benefits of sustainable soil management, gov-
ernments can advance the circular economy
and ensure better urban soil management.

The specific questions associated with this
gap are:

1. What are existing best practices of certify-
ing soil quality and tracking soil transpor-
tation (“soil passport”)? How could they be
scaled at the EU level?

2. What are the most effective policy instru-
ments to promote the reuse of urban soils?

Effectiveness of desealing
interventions

Desealing is the process of removing artificial,
impervious structures such as roads, build-
ings, and parking lots to restore soil permeabil-
ity and, ideally, its ecosystem services. In many
countries and regions, desealing actions are
being proposed as a means of adapting urban
areas to climate change, thus contributing to
urban resilience. The amount of unsealed area,
soil quality, and urban green infrastructure are
used to map urban environmentally sensitive
areas, which play a crucial role in maintaining
ecological balance (Sobocka et al. 2020). Be-
sides restoring permeability to improve rain-
water management and reduce urban heat,
desealing interventions may also promote bio-
diversity and the provision of other ecosystem
services, particularly if desealed patches are
sufficiently large and well connected.
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It is important to acknowledge that de-
sealed soils are anthropogenic and often ex-
hibit reduced multifunctionality compared to
undisturbed soils. Using agricultural topsoil for
restoration is a common practice, but it is not
environmentally sustainable as it implies the ex-
traction and relocation of high-quality soil from
rural to urban areas. Indeed, research shows that
desealed soils can, in some cases, regain their
biological quality and fertility without needing
additional topsoil (Maienza et al. 2021). Studies
on the effectiveness of desealing in restoring soil
functions in the long term are limited (Tobias et al.
2018) and many desealing projects lack system-
atic evaluations of their environmental and social
benefits (Vieillard et al. 2024). As an exception,
the PerméaSoil project (https://www.strasbourg.
eu/permeasol) provided valuable insights into
the potential benefits of desealing. Over a three-
year period, researchers observed the ecologi-
cal development of desealed urban soils. Initially,
these soils exhibited minimal organic matter, low
biological activity, and an absence of vegetation.
However, vegetation began to emerge within just
one month, including both pioneer species and
plants adapted to asphalt environments. Follow-
ing the removal of impervious surfaces, water
infiltration rates improved significantly, and over
subsequent months, increases in water storage
and organic matter content were anticipated.

Estimating the potential recovery of soil
functions after desealing and the benefits gener-
ated in different contexts can help prioritise inter-
ventions. For example, areas with higher potential
for restoring permeability, fertility, or biodiversity
may be given precedence in urban planning ef-
forts. At the regional level, urban population dy-
namics - whether a region is experiencing growth
or decline - should also be considered. Research
suggests a possible correlation between popula-
tion growth and the extent of soil sealing, empha-
si szing the need for tailored desealing strategies
that account for these variables (Colsaet et al.
2018). For shrinking regions, desealing interven-
tions may focus on reclaiming unused or aban-
doned spaces, restoring natural functions, and
promoting ecological resilience (Decoville and
Feltgen 2025). Rapidly growing urban areas may
prioritise desealing as a means of mitigating risks
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such as flooding and heat stress. Despite these
considerations, there remains a need for more rig-
orous and standardised methodologies to identi-
fy suitable areas for desealing. Establishing clear
criteria for prioritising interventions will ensure
that resources are allocated effectively and that
desealing projects achieve their intended out-
comes (Ittner and Naumann 2022). Cost-benefit
analyses that also consider energy input required,
CO, emissions, and waste produced could be a
valuable support in prioritising interventions.

The specific questions associated with this
gap are:

1. How effective are desealing/unsealing ac-
tions in restoring soil functions and services?

2. What is the potential for desealing in differ-
ent contexts (urban vs. non-urban areas,
different types of settlements)?

3. How do weto identify and prioritise suitable
areas for desealing interventions based on
their environmental and social impact?

Legal and regulatory dimension of
soil sealing

To gain a deeper understanding of soil, it is im-
portant to consider both its environmental di-
mension, which is in constant interaction with the
natural world, and the dimension of private prop-
erty along with all its associated rights. These
elements are interrelated and play a crucial role
in how soil issues are understood and legally ad-
dressed (Fox 2024, Gradinaru et al. 2023).

The definition and regulation of soil vary sig-
nificantly across EU Member States, reflecting the
diverse legal frameworks of each country (Kaplin-
sky 2023). This diversity has led to a fragmented
approach to soil governance, with little coherence
across national borders (Ronchi et al. 2019). Few
national governments have implemented compre-
hensive strategies to address issues such as ur-
banisation, land take, and land use changes. The
EU’s target of achieving no net land take by 2050,
launched in 2011, was an ambitious goal supported
by non-binding measures, such as the “Guidelines
on Best Practices to Limit, Mitigate, or Compen-
sate Soil Sealing” (European Commission:
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Directorate-General for Environment 2012).
However, progress has been limited due to the
lack of enforceable actions. Similarly, the target of
no net soil sealing requires supportive legislation.
The Strategic Environmental Assessment (SEA)
and the Environmental Impact Assessment (EIA)
are promising legal instruments that can encour-
age the consideration of environmental impacts
of plans and projects by promoting the identifica-
tion of more environmentally friendly alternatives,
hence contributing to a more systematic and
transparent planning process to curb land take
and soil sealing (Schatz et al. 2021).

Some Member States have taken signifi-
cant steps toward soil conservation, but the ap-
proaches differ substantially. Ronchi et al. pro-
vide a review of instruments for soil protection
across EU member states (Ronchi et al. 2019). In
Austria, federal planning laws address soil pro-
tection, particularly in the state of the Land Sal-
zburg. Belgium’s Wallonia region has adopted an
Agricultural Code (2014) that identifies soil as a
natural resource requiring protection from urban
expansion. Local legislation encourages limiting
soil sealing through measures such as rules for
water management systems and filtering plants,
which help reduce surface runoff and overflows.
Additionally, federal urban planning instruments
aim to regulate land use changes, fostering
greater sustainability and mitigating land take.
Luxembourg offers another example of integrat-
ed soil conservation policies. The “Law Concern-
ing the Evaluation of the Environmental Impacts
of Certain Plans and Programmes” acknowledg-
es the direct influence of planning instruments
on soil health. Since 2003, the country has im-
plemented a Master Programme for Spatial
Planning, which outlines long-term strategies
for protecting soil functions and promoting sus-
tainable resource management. This programme
coordinates various planning levels (regional,
local, and sectoral) while addressing transport
systems, infrastructure, and urban development
to curb soil sealing and safeguard the natural en-
vironment. While these examples illustrate prog-
ress, the legal frameworks governing soil sealing
and urban expansion remain inconsistent across
Member States. The diversity of approaches un-
derscores the pressing need for a unified Euro-
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pean approach to ensure cohesive soil manage-
ment practices.

One area requiring particular attention is
the legal treatment of property rights, which sig-
nificantly influences soil use and conservation.
Property rights are central to land management,
encompassing ownership by individuals, groups,
or entities such as the state. These rights can
be classified as private, common, or public and
determine the permissible actions on land and
soil (Lawry et al. 2014). However, the current
property rights regime often limits public author-
ities’ ability to impose stricter regulations on land
take and urbanisation. For example, in Romania,
a country where property rights are strong, au-
thorities have a hard time rejecting requests for
building permits aimed at the development of
residential areas, even on fertile soils (Gradinaru
et al. 2023). Property rights are a complex issue
in soil management, particularly in urban con-
texts. While they have been widely discussed
in the agricultural sector (Amentae et al. 2024),
their implications for urban soil conservation re-
main underexplored. Development rights, often
granted to private property owners, can con-
strain public sector interventions aimed at limit-
ing soil sealing. There is growing recognition that
private property rights should come

with social obligations, such as the duty to
manage soil sustainably. However, the current
legal frameworks do not adequately incorpo-
rate these responsibilities (Halleux et al. 2012).
For example, landowners are rarely required
to account for the environmental impacts of
soil sealing or urban expansion. Strengthening
the legal framework to emphasisze these so-
cial obligations is essential for advancing sus-
tainable soil management and achieving the
EU’s no net land take goal.

The specific questions associated with this
gap are:

1. How does the legal dimension of soil sealing
and land take vary across Member States
and what are the opportunities and chal-
lenges to integrate the no net soil sealing
objective?

2. How do property rights and property re-
gimes affect soil sealing?
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Prioritised knowledge gaps

Socio-economic impacts of no net
soil sealing policies

The policies of no net soil sealing and no net land
take have both positive and negative impacts on
society. The positive aspects include the en-
hancement of people’s health and well-being
and the long-term sustainability of human de-
velopment. The negative aspects include sig-
nificant adverse impacts on individual material
welfare: decreased housing affordability and, as
a result, higher urban rents due to the increased
scarcity of land allocated for housing develop-
ment (Vejchodskd et al. 2022). Increased con-
gestion after the densification of cities, and con-
sequently, a decrease in quality of life, have also
been mentioned as potential negative effects
(Decoville and Feltgen 2023), which trigger re-
sistance from residents to further construction
as they seek to protect natural resources and
preserve social harmony (Gotze and Hartmann
2021). Exacerbated income and wealth inequali-
ty between different societal groups (the owners
and non-owners of urban land) might be another
outcome of higher scarcity of urban land. There
is a significant knowledge gap in how to design
public no net soil sealing policies that effectively
minimise these adverse impacts.

Addressing these challenges will require the
integration of different types of policies including
fiscal instruments, such as property taxes, jointly
with specific planning and land policies. A theo-
retical/analytical framework is needed to qualify
policy measures according to their ability to re-
duce land take and sealing while minimising the
risks of exacerbating socio-spatial injustices, de-
pending on each region’s spatial/demographic/
economic context.

The specific questions associated with this
gap are:

1. Which instrument mixes should be to ap-
plied in different institutional settings for
minimising the negative impacts of no net
soil sealing and no net land take policies on
housing affordability and other areas of ma-
terial welfare?
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2. How to ensure that policies aimed at halting
land take and soil sealing do not exacerbate
inequalities?

Minimum unsealed soil per person
to ensure biodiversity and human
health in urban areas

The rate of soil sealing in urban areas has a sig-
nificant impact on both biodiversity and human
health. Sealed surfaces significantly reduce the
richness and abundance of various species by
limiting habitat availability and disrupting ecolog-
ical balance. For instance, Yan et al. (2019) found
that in Wuhan, plant diversity sharply declines
when impervious surfaces exceed a threshold
of 40-60%. Additionally, the increase in sealed
surfaces leads to a greater proportion of exotic
plants, which can be detrimental to native bio-
diversity. The authors recommend keeping the
share of soil sealing below 40% in cities to help
preserve urban biodiversity.

In addition to biodiversity, the demand
expressed by the population for the numerous
ecosystem services provided by unsealed soils
could be used as a basis to define minimum
rates of unsealed surfaces to maintain in ur-
ban areas. For instance, green spaces promote
well-being through cultural benefits such as
beauty, inspiration, and belonging (O’'Riordan et
al. 2021). Various studies (Jungels et al. 2013,
Rugel 2019) demonstrate the positive impact of
visible greenery on mental health and well-be-
ing. Recently, the “3-30-300 rule” has been
proposed as a set of specific targets to ensure
residents have adequate access to nature and
can enjoy the benefits of natural environments.
These targets include the ability for everyone to
see at least three mature trees from their home,
workplace, or school, a minimum of 30% tree
canopy cover in their neighborhood, and living
within 300 meters of a high-quality public green
space that is at least 0.5 hectares in size (Koni-
jnendijk 2021). As shown by this simple rule, the
benefits are not just a matter of total amount
of green spaces or unsealed soil, but also of its
spatial distribution, which should ensure equal
benefits for all. Similar thresholds to steer spa-
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tial planning decisions could be developed hav-
ing soil sealing and its impacts in mind.

The specific questions associated with this
gap are:

1. What is the minimum area of unsealed soil
needed in urban areas to effectively sup-
port biodiversity?

2. What is the minimum area of unsealed soil
per person required in urban areas to pro-
mote human health and well-being?

Drivers of soil sealing from
individual decisions to sectoral
policies

Spatial planning is a primary factor determin-
ing soil sealing and land take, as decisions on
urban expansion, densification, regeneration,
and greening shape land use changes. Different
spatial planning strategies impact soil sealing
and land take in various ways: densification can
limit urban expansion and reduce land take but
may increase soil sealing in urban areas, while
greening and nature-based solutions can pro-
mote desealing but might require new land take.
For example, despite efforts toward sustainable
urban development, only very few European cit-
ies have successfully halted land take between
2006 and 2012, with some paradoxical trends.
In fact, growing cities densified but expanded
inefficiently through abandonment of urbanised
areas and fragmentation, while most shrinking
cities increased residential areas despite popu-
lation decline (Cortinovis et al. 2019). Evaluating
the combined effects of multiple strategies is
therefore critical to achieving no net land take
and no net soil sealing targets.

Beyond spatial development policies, it is
crucial to capture the impact of sectoral policies
that can generate high demand for land. Sec-
tors like tourism (Kizos et al. 2017), transport
infrastructure (Oliveira et al. 2018), and com-
merce (Munafd 2023) contribute significantly
to soil sealing and land take. Tourism demands
facilities, roads, and parking, while transport
and commercial developments, such as logis-
tics hubs, exacerbate land take. These are often
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deemed activities of “public interest,” hence they
bypass standard planning regulations, as seen in
Italy, where logistic hubs have significantly con-
tributed to land take and soil sealing in recent
years, even in regions where targets are in place
(Munafo 2023). Addressing the impacts of these
sectoral policies requires tailored protocols.

Individual decisions also play a role in soil
sealing (Klinzel et al. 2024). Landowners and land
managers influence sealing rates within private
areas, and while differences exist across Europe,
the social, economic, and cultural drivers of these
decisions remain underexplored (Bouma 2018).
Understanding these drivers is crucial for formu-
lating effective strategies to mitigate soil sealing
and land take. In conclusion, achieving no net land
take and soil sealing targets demands a multifac-
eted approach that integrates spatial planning
with assessments of sectoral policies and individ-
ual decision-making processes.

The specific questions associated with this
gap are:

1. What is the impact of different spatial plan-
ning strategies (e.g., densification, regen-
eration, greening) on soil sealing and land
take?

2. What other sectoral policies have an indi-
rect impact on soil sealing and land take?
How do we ensure that this impact is con-
sidered in their evaluation?

3. What social, economic, and cultural factors
drive soil sealing decisions by landowners
and land managers?

Typologies of soil sealing and
their impact on soil functions and
services

The EU Soil Mission defines soil health as the
continued ability of soils to support ecosys-
tem services (European Commission: Director-
ate-General for Research and Innovation 2022).
Soil sealing compromises the functions of soils
and, consequently, their ability to provide eco-
system services (Téth et al. 2022). However,
unsealed soil does not necessarily mean healthy
soil. In urban areas, other processes may impair
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the capacity of soil to provide ecosystem ser-
vices. For example, compaction may limit water
infiltration. Hence, a more in-depth analysis of
soil characteristics, and of their contribution to
soil health, is needed to overcome the simplis-
tic “sealed vs unsealed” classification (Decoville
and Schneider 2016, Drobnik et al. 2018).

Examples of approaches that include the
analysis of soil properties and functions exist in
both literature and practice. Several studies have
assessed soil health using a variety of indicators
and methods, such as the Soil Assessment Sys-
tem that assigns different weights to individual
soil characteristics, including texture, humus
content, and depth of soil horizon (Toth et al.
2023). Studies like these can be used as a start-
ing point to develop and test approaches that
offer more insights into actual soil health. For ex-
ample, in Sweden, the Biotope Area Factor was
designed to enhance microclimate and air quali-
ty, protect soil function, improve water manage-
ment efficiency, and increase habitat availability
for plants and animals (Stange et al. 2022).

A specific challenge to be addressed by
these new approaches is the treatment of un-
derground processes of soil sealing, and their
impacts on soil properties and functions (Tobi-
as et al. 2018). These include, for example, the
construction of underground parking places in
residential developments, which are covered by
green areas. The challenges include developing
operational methods to assess the impacts of
these processes on soil health, as well as map-
ping and inventorying them.

The specific questions associated with this
gap are:

1. What are the most suitable methods and in-
dicators to assess the impacts of soil seal-
ing on key soil functions and services?

2. How can we operationally transition from
the “sealed vs. unsealed” classification to-
wards a more detailed assessment based
on key soil properties? How can this be
used to support the design of innovative no
net soil sealing policies?

3. How can underground soil sealing be as-
sessed?
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Acceptability and legitimacy of no
net soil sealing policies

Societal acceptance and acceptability are key
aspects in promoting policies related to no net
soil sealing and no net land take. Acceptance
refers to the response following the implemen-
tation of a policy, while acceptability pertains
to favorable or unfavorable perceptions prior
to any policy interventions (Dreyer and Walker
2013). Societal support is essential as, without
it, policymakers are often hesitant to enact tan-
gible measures. This reluctance of public au-
thorities to take decisive action is a significant
factor contributing to the failure of environ-
mental policies (Zvéfinova et al. 2014). At the
local level, land take is often viewed positively,
yet the relationship decision-makers have with
this concept has not been thoroughly examined
(Gradinaru et al. 2023).

Improving the social acceptability of no
net soil sealing and no net land take policies is
therefore crucial (Decoville and Feltgen 2025).
A factor that highly affects social acceptance
and acceptability of such policies is their im-
pact on the material welfare of individuals,
such as housing affordability or the decrease
in quality of living due to densification (dis-
cussed in socio-economic impacts of no net
soil sealing policies).

Citizens’ awareness of the impact of soil
sealing and mitigation strategies is another fac-
tor affecting social acceptability.

At the individual level, acceptability is in-
fluenced by various socio-economic factors,
such as income, nationality, education, per-
sonal experiences, and environmental knowl-
edge (Vanino et al. 2022). The latter is linked
to the awareness of soil multiple functions,
hence to the level of soil literacy in our societ-
ies. Even if the awareness of soil importance is
increasing, there is a need to further promote
knowledge about soil functions and services
not only among citizens but also among pro-
fessionals, for example in areas such as urban
planning (Teixeira da Silva et al. 2018). This is-
sue still receives little consideration in politics
and society (Dazzi and Lo Papa 2022).
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The specific questions associated with this
gap are:

1. How do different actors perceive the rele-
vance and need for the no net soil sealing
and no net land take targets? What actors
are likely to oppose the most, and why?

2. Which factors affect the level of societal ac-
ceptance of no net soil sealing policies and
to which extent?

3. What are effective ways to strengthen ac-
ceptance of slowing soil sealing and accel-
erating unsealing among different societal
actors?

Links between soil sealing and
land take

Soil sealing, the covering of soil with impervious
materials, is closely linked to land take, which re-
fers to artificialisation processes tied to urban de-
velopment and infrastructure construction. Land
take involves artificial land uses for purposes like
housing, industry, transport, and recreation. Soil
sealing varies considerably within artificial land
use categories. This complicates estimates based
on land use data alone. In maps like Corine Land
Cover and Urban Atlas, soil sealing values are used
to classify residential classes with different densi-
ties (e.g., between 50% and 80% for the “discon-
tinuous dense urban fabric” of the Urban Atlas).
Some studies highlight variability in soil
sealing across contexts. For instance, in ltalian
cities, industrial areas showed soil sealing rates
between 53.1% and 62.4%, while commercial
zones ranged from 65.3% to 74.6% (Salata et al.
2019). A broader European study using Coper-
nicus Imperviousness Density High-Resolution
Layer data revealed soil sealing rates in the urban
areas of 100 largest cities ranging from 31.5% to
72.6%, with a North-South gradient (Decoville
and Feltgen 2023). These findings underscore
the complexity of linking soil sealing with land
take and the importance of detailed data to sup-
port policies aimed at sustainable land manage-
ment. A clear understanding of the degree of soil
sealing across different land use categories, land
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take processes, and its variability across con-
texts is essential to assess how achieving no net
land take contributes to the no net soil sealing
target, and vice versa. Without this understand-
ing, the relationship between these objectives
remains uncertain.

The specific questions associated with this
gap are:

1. What is the degree of soil sealing associat-
ed with different land take processes? How
does it vary in different contexts (e.g., for
the same land use class across different
countries)?

2. To what extent do the no net soil sealing
and no net land take targets overlap?

3. What levels of soil sealing in urban areas al-
low for efficient land use and high density
while also preserving ecosystem services
with sufficient urban green spaces?

Overview

The initial list of knowledge gaps includes ten
gaps presented in Table 2, along with four ad-
ditional ones. These four additional knowledge
gaps are:

1. Methods, indicators, and data to monitor
soil sealing and land take;

2. Lack of consistent approaches for monitor-
ing soil sealing/land take across Member
States;

3. Quality of urban soils;

4. Social acceptance of soil reuse.

These additional gaps were assigned a low-
er priority during the first round of the prioritisa-
tion exercise and were therefore excluded from
the main text.

The ten knowledge gaps in Table 2 are cat-
egorised into key and prioritised gaps, with a
more detailed state-of-the-art analysis provided
for the key gaps. Finally, the actions and asso-
ciated bottlenecks related to all the gaps were
identified, discussed within the Think Tank, and
summarised in Suppl. material 1.
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Abreviations

The abbreviations which are used in the text are
listed in Table 1.

Table 1. Abbreviations.

Abbreviations

AMR Antimicrobial drug resistence
AMF Arbuscular mycorrhizal fungi
AOM Ammonia-oxidizing microorganisms
ARGs Antibiotic resistance genes
CMEF Common Monitoring and Evaluation Framework
CUPS Commonly Used Pesticides
EC European Commission
EEA European Environmental Agency
EFSA European Food and Safety Authority
EU European Union
FAO Food and Agriculture Organization of the United
Nationas
GA General Agreement of the SOLO project (official
document)
GHG Greenhouse Gas
ICM Integrated Crop Management
IMPEL European Union Network for the Implementation and
Enforcement of Environmental Law
IPCHEM Information Platform for Chemical Monitoring
IPM Integrated Pest Management
JRC Joint Research Centre
LUCAS Land Use/Cover Area frame Survey
NGO Non-Governmental Organizations
NOEC No-Observed-Effect Concentration
OECD Organisation for Economic Co-operation and
Development
PAHs Polycyclic Aromatic Hydrocarbons
PCBs Polychlorniated biphenyls
PFAS Per- and polyfluoroalkyl substances
POPs Persistent Organic Pollutants
PRTT Pollution and Restoration Think Tank
SML Soil Monitoring Law (officially: Soil Monitoring and
Resilience Directive)
SSDs Species Sensitivity Distributions
SubD Sustainable Use of Pesticides Directive
SUR Sustainable Use of Pesticides Regulation
TCA True Cost Accounting
UNEP United Nations Environment Programme
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1. Introduction

This paper is a summary of the preliminary
results of the work of the Soil Pollution and
Remediation Think Tank (PRTT) based on the
previous scoping documents that underwent
various reviews. PRTT was established as one
of the 9 Think Tanks (TT) of the SOLO Soils
for Europe project. The project’s final aim is
to deliver actionable transdisciplinary road-
maps for future soil-related research activities
in the European Union (EU), which contribute
to achieving the objectives of the Soil Mission.
The task of the TTs including the PRTT'’s is to
identify knowledge gaps and novel avenues for
European soil research, innovation, and action
in the context of the Soil Mission specific and
operational objectives. The paper consists of
three main sections.

The first chapter provides an introduction, in-
cluding an overview of the overall scope of the
PRTT and stakeholders’ engagement. The sec-
ond chapter introduces the conceptual frame-
work developed for the review of the state of the
art, knowledge gaps, actions and bottlenecks,
and provides an assessment of the state of the
art specific to pollution and remediation within
the context of PRTT’s scope. The third chapter
provides the summary of the top 10 knowledge
gaps identified during the prioritization process,
along with their description, suggested actions
and bottlenecks which may hamper needed ac-
tions, and need to be overcome.

The preliminary results reflect the inter-
twined nature of the knowledge gaps. During
the further iterative process of the SOLO
project, combining stakeholder engagement
and literature review, each of the knowledge
gaps, their prioritisation, actions and bottle-
necks, will be further analysed in detail. The
final deliverable will provide a roadmap with a
final list of prioritised knowledge gaps, con-
crete actions for research and innovation, and
associated bottlenecks. In the SOLO project
context, two types of knowledge gaps are ac-
knowledged: knowledge development gaps
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and knowledge application gap s. By definition,
a ‘knowledge development gap’ is a knowledge
gap that requires generating new information
or understanding by research or innovation,
inclusive of both natural and social sciences
and humanities’ contributions. While, a ‘knowl-
edge application gap’ is a knowledge gap that
requires research or innovation to find and/or
test new mechanisms that allow the effective
implementation of already existing information
or understanding to improve soil health. This
knowledge gap hence concentrates on the de-
ficient links between available knowledge and
its implementation and application. Regarding
actions, by definition an ‘action’ encompasses
a spectrum of technical, social and econom-
ic strategies, approaches, measures, and/or
solutions aimed at addressing identified knowl-
edge gaps. These actions are aligned with the
R&I priorities outlined in the Soil Mission frame-
work. They serve as the means to achieve the
research and innovation goals set forth by
the Commission. In the SOLO roadmaps, each
knowledge gap type can be addressed by both
research and innovation actions. Finally, bot-
tlenecks are barriers that hinder a successful
implementation of suggested actions to solve
both types of knowledge gaps. With the de-
scribed content, the final roadmap shall sup-
port reaching the Soil Mission Objectives.
Soils, being largely hidden, have been over-
looked, up until recently, by EU and national laws
and policies, and given less importance than air,
water and marine environments. However, the
interconnectedness between air, water and soil,
specially in terms of the transport of contami-
nants and pollution management has been rec-
ognised not only in the scientific literature but
also in the Zero Pollution Action Plan (European
Commission 2021a). Healthy soils can perform
several functions and provide a wide variety of
ecosystem services (supporting, regulating, pro-
visioning and cultural Millennium Ecosystem As-
sessment 2005, EEA 2023a). They are essential
to human health, to biodiversity, nutrient cycling,
sustainable plant production, natural pest con-
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trol, good water quality, water retention, carbon
storage and erosion management (GIZ 2021).
Soils are estimated to harbour 59% (Anthony et
al. 2023) or up to more than 99.9% (Blakemore
2025) of Earth’s species and possibly more. For
example, at least 90% of fungi, 85% of plants
and 50% of bacteria are living in soils (Anthony
et al. 2023), and provide the basis for healthy
ecosystems and human health (European Com-
mission et al. 2020). Soil pollution is one of the
main factors compromising soil functions (Rodri-
guez-Eugenio et al. 2018, FAO & ITPS 2015), thus
soil health. Soil pollution has an impact on soil
biodiversity, soil functions and ecosystem ser-
vices and on human health and well-being.

Due to their strong linkages to environ-
ment, nature, biodiversity, ecosystem func-
tioning, agriculture, human and animal health,
and water and climate, soil pollution and res-
toration are relevant and connected to a wide
framework of EU policies and legislations (Eu-
ropean Commission 2023a, European Commis-
sion: European Environment, Joint Research
Center et al. 2024). Specific EU legislation on
soils has been lacking for many years. The Soil
Strategy reviewed the state of soils back in
2004-2005. Now almost twenty years later, we
are still facing similar problems/issues. As part
of The European Green Deal and the Biodiver-
sity Strategy for 2030 (Montanarella and Pa-
nagos 2021), an EU Soil Strategy for 2030 was
published in 2021, setting out a framework and
measures for the protection, restoration and
sustainable use of EU Soils (European Commis-
sion et al. 2020, Panagos et al. 2022a). A linked
policy process for the development of a draft
of Soil Law was initiated, leading to the pub-
lication of the proposal for an ‘EU Directive on
Soil Monitoring and Resilience’ (‘Soil Monitoring
Law’, SML) by the European Commission (EC)
on 5Sth of July 2023. At the time of writting, as
a result of the trilogue negotiations (involving
representatives of the European Parliament,
the Council of the European Union and the
EC) a provisional agreement was reached be-
tween the Parliament and the Council on April
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10, 2025. On June 4, 2025 the EU Parliament’s
Committee on the Environment, Public Health
and Food Safety voted in favour of the agreed
text and final voting on it by the Council and
the Parliament is expected in early Autumn. Soil
protection, regardless of the the lack of a sep-
arate EU legislation dedicated to soil prior to
the publication of the SML proposal, has been,
or is, part of different environmental legisla-
tions, and environmental relevant policies such
as the Common Agricultural Policy. However,
implementation issues relevant to soil pollution
have been raised in reports of the European
Union Network for the Implementation and En-
forcement of Environmental Law (IMPEL 2010,
IMPEL 2017) and in the reports of the European
Court of Auditors (European Court of Auditors
2020a, European Court of Auditors 2020b), as
well.

There have been several EU legislations
and proposals that are directly related to the
soil policy framework and mentioned as rele-
vant in reaching the main goals. One of them
was the proposal of the European Commission
on a Sustainable Use of Plant Protection Prod-
ucts Regulation (SUR) (European Commission
2022b), which would have replaced the cur-
rent Directive on Sustainable Use of Pesticides
(SUD). The proposal aimed to reduce the use
and risk of pesticides by 50% by 2030, (a goal
of the Farm to Fork Strategy), and lead to the
effective implementation of Integrated Pest
Management (IPM). However, the proposal was
rejected by the European Parliament in Novem-
ber 2023, and retracted by the European Com-
mission in February 2024. Although IPM has
been mandatory since 2014 under SUD, imple-
mentation in member states has been lacking,
as well as implementation of other obligations
of the SUD (European Court of Auditors 2020Db,
European Parliamentary Research Service
2018, European Commission 2020b). The out-
come of the Strategic Dialogue on the Future
of EU Agriculture highlights the importance
of effective implementation of current eviron-
mental and social legislation, the protection of
soil health, and the reduction of inputs such as
pesticides and fertilisers; in that framework the
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Commission is also expected to tackle the lack
of implementation of the current SUD, including
the lack of implementation of IPM.

The two main guiding documents setting
the policy frameworks for soil and directly ad-
dressing soil pollution are:

1. the Implementation Plan of the Soil Mission,
which is also an important component of
the European Green Deal (European Com-
mission 2021b) and:

2.EU Action Plan: ‘Towards Zero Pollution
for Air, Water and Soil'’ (European Com-
mission 2021a). As part of the EU’s zero
pollution ambition, the Chemicals Strate-
gy for Sustainability Towards a Toxic Free
Environment was also developed (Europe-
an Commission 2020a).

These policy documents specify the prob-
lem areas regarding soil health (polluting eco-
nomic sectors/activities and polluting agents)
and identify targets, based on assessments of
the state of the art regarding soil health, iden-
tified needs and feasibility of reaching specific
goals. One of the outcomes of the implementa-
tion of these elements is the SML proposal.

The aim of the SML proposal published is to
be a cornerstone in reaching the objectives of the
EU Soil Strategy for 2030 and the Soil Mission.
The SML proposal is much needed and widely
welcomed; however, it was also criticised by sci-
entists, civil society and drinking water compa-
nies (Wageningen University 2023a, EEB 2023,
EurEau 2023, Umwelt Bundesamt 2023) because
it does not address all goals and targets identi-
fied in the policy documents. Therefore, improve-
ments in the proposal and/or further legislative
proposals are needed in order to reach healthy
soils by 2050. The lack of clear rules and objec-
tives, the lack of focus on soil biodiversity and
diffuse pollution and the lack of linkages with
water pollution and legislation, have been iden-
tified as essential shortcomings of the proposal
by the scientific community (EEB 2023, EurEau
2023, Wageningen University 2023b, Pieper et al.
2023, Kotschik et al. 2024). Moreover, during the
plenary vote in the European Parliament in April
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2024, essential provisions of the proposal were
drastically watered down, further compromising
the potential impact of the proposal (European
Environmental Bureau 2024). The revised version
of the SML waiting for adoption has incorporated
new provisions to ovecome some of the concerns
raised and it is an important step further.

The current PRTT used the problem areas
described in these documents as a starting point
to identify the state of the art and knowledge
gaps, and to provide input for roadmap co-de-
velopment. Roadmap co-development in this
case means the involvement of stakeholders
from various fields related to soil pollution and
restoration toand jointly develop a roadmap to-
wards programs which reveal the actions to be
taken in prioritised manner. The PRTT will focus
on soil pollution, soil restoration and remediation,
while also taking into account the impact on, and
of, soil pollution regarding connected systems
such as crops and vegetation, water bodies
(groundwater, surface water), air, (air or water
borne pollution or pollution through leaching and
volatilization processes) and overall ecosystem
health and ecosystem functioning.

1.1. Scope (specific to PRTT)

The above two strategic documents, namely the
Implementation Plan of the Soil Mission, and the
EU Action Plan: ‘Towards Zero Pollution for Air,
Water and Soil’ set specific targets related to lim-
iting soil pollution.

As a basis, the PRTT aims to provide an
analysis of the state of the art and an assess-

ment of knowledge gaps, potential (innovative)
solutions and actionable research regarding for-
mulated goal’s objectives, targets and indica-
tors based on the two main policy documents.
PRTT will address the complexity of the issues
involved in soil pollution and reflect on their in-
tertwined nature by highlighting the need for a
holistic approach and integration of soil aspects
to all relevant policies (the need for such an ap-
proach is well demonstrated by the Impact As-
sessment Report accompanying the SML (Eu-
ropean Commission 2023c). It is important to
identify policy areas that are directly linked to
soil pollution, because the various policy instru-
ments used in those fields do have an intentional
or unintentional impacts on pollution that should
not be ignored but explored through well-de-
fined research questions.

Table 2. below indicates the concrete Tar-
gets, Baseline and Soil health indicators of the
Soil Mission to be achieved by 2030 (European
Commission 2021b, p. 16) and viewed as capa-
ble of contributing to meet the 2050 target: Air,
water and soil pollution is reduced to levels no
longer considered harmful to health and natural
ecosystems and that respect the boundaries our
planet can cope with, thus creating a toxic-free
environment (European Commission 2021a, Eu-
ropean Commission 2021b). It means, that e.g.
based on the targets indicated in the table, the
percentage of lands under organic farming has
to be increased from 8.5% to 25% by 2030.

The listed targets and indicators of the Sail
Mission do not address all pollution problems
identified in the Support Material, nor those in the
Zero Pollution Action Plan as it is demonstrated

Table 2. Targets and proposed soil health indicators for the mission objective: Reduce pollution and enhance restoration in the
Soil Mission Implementation Plan. (Source: Soil Mission Implementation Plan, p 16).

Mission targets in line with EU and global commitment Soil health indicators

1: reduce the overall use and risk of chemical pesticides by
50% and the use of more hazardous pesticides by 50%

2 reduce fertilizer use by at least 20%
3: reduce nutrient losses by at least 50%
4: 25% of land under organic farming

5: Reduce microplastics released to soils to meet 30% target
of zero pollution action plan

6: Halt and reduce secondary salinization
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27% - 31% of land with excess nutrient pollution Soil
contamination: 2.5% (non-agricultural), 21% (conventional
arable), ca. 40-80% of land from atmospheric deposition

Presence of soil
pollutants, excess
nutrients and salts
depending on the pollutant.

Farmland under organic agriculture: 8.5% (2019)
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by the background working documents of the
SML. While the targets, baselines and indicators
are clear reflections of the intention to reduce
pollution to a level that is no longer harmful to soil,
health and natural ecosystems, there are some
aspects that need further clarification to make
the targets operational such as baseline year for
calculating percentages. In some cases these ne-
gotiations have been already taking place outside
of the Soil Mission (e.g. the reduction of the use of
pesticides) which demonstrates the interlinkages
and intertwined nature of the various policies.

1.2. Engagement within the
PRTT

The science-policy-practice interface is a hot
topic of scientific research (Miles et al. 2017) and
especially relevant to environmental issues (Cvita-
novic and Hobday 2018) within the context of the
circular economy and sustainability (Kujala et al.
2023, Heikkinen et al. 2023). One of the primary
benefits of stakeholder engagement (Kovécs et al.
2021; Stankovics et al. 2024) is the creation of links
between science and society, providing access to
additional information or resources, and improving
the relevance or utility of the research to users and
beneficiaries. Concretely, through engagement,
the project’s results can be tailored to local con-
texts, increase the possibility that the outcomes
are applied, and therefore, have a positive impact.
Stakeholders engagement and the diversity of
stakeholders’ background and organisational af-
filiation promotes cross- fertilization of knowledge
and innovation. (Gonzalez-Pifiero et al. 2021).

Identification of the stakeholders

Identification of relevant stakeholders has been,
and still is, a process partly linked to the conceptu-
al framework (Figure 3.). While the General Agree-
ment of the SOLO project (GA) set the main cat-
egories (policymakers, civil society, practitioners,
industry agents, scientists) of stakeholders to be
approached, the conceptual framework served as
an additional aspect of consideration. While using
the snowball method (Durham et al. 2014), it was
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important to find examples for all of the stakeholder
categories of the conceptual framework reflecting:

e on how the impact of pollution affects them
(negatively or positively) and:

« on what kind of relationship they have with
decision making (influencing and making/
taking decisions).

Agricultural and non-agricultural human ac-
tivities, regional representation and decision mak-
ing levels (EU, regional, national, local) were con-
sidered. PRTT's choices of stakeholders promotes
the science-policy-practice interface by having
stakeholders from science, policy and practice.
The stakeholder involvement process resulted in
a good representation both regarding geographic
origin and professional background. Stakeholders
can be grouped to various categories, based on
professional and/or scientific background, organ-
isational affiliation, sectors (agriculture, non- ag-
riculture). The numbers of stakeholders change
according to the categories applied (e.g. when
organisational affiliation is not playing a role, the
number of scientists is the highest as it is shown
by comparing the data of Figure 1 a), b) and c)).
Figure 1. d) on sectors is a good indication of the
intertwined nature of sectors.

Most of our stakeholders fit into more than
one of the categories. This helps to overcome
the issues (e.g. hindrance of trust, causing con-
flicts) raised in relation to diversity of organisations
in innovation projects reported in some studies
(Gonzalez-Pifiero et al. 2021). The issues raised
there are relevant to stakeholders and stakeholder
engagement, as well. Successful collaboration with
stakeholders is dependent on trust built between
them and the engaging partner, and how conflict-
ing views and interests of stakeholders are han-
dled by the project partners. Miscommunication
stemming from the diversity of stakeholders is of-
ten the source of misunderstanding and conflicts.
Stakeholders fitting under more than one category
could be instrumental in overcoming those issues,
since they may understand and be familiar with the
language and the position of the others.

Fig. 1 is a demonstration of it reflecting the
stakeholders (in total 21) at the time of the prepa-
ration of the first version of the scoping document.
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a) Stakeholders by main groups with erganisational affiliation

b) Stakeliolders by, science relevance without organisational affiliation.

policy
makers
. 19%

scientists
19%

industry
agents |

12%

society
N%

: practioners ]
19%

soil
scientists

23%

non-
| academia

38%

[ u::l"antiuta
39%

¢ Science-policy-practice interface.

& Stakeholders by sector

e | science
B 31%

.;)ractiee“
E1%

.'-poli::y
8%

non-agro
| 1%

Figure 1. Introduction of stakeholders by different categories (created by the PRTT).

Figure 1. a) reflects on the GA categories
and mainly organisational affiliation was applied
to distinguish between the stakeholders:

e Policy maker: member of policy making
bodies and public institutions with the task
of preparing/developing/implementing/re-
viewing policy

o Civil society: non-governmental organiza-
tions (NGOs), giving voice to the citizens

e Practitioners: farmers, advisors without or-
ganisational affiliation

e Business: business organisations and busi-
ness interest groups

e Scientists: Scientists (including PhD stu-
dents) having affiliation to academic (edu-
cation and/or research) institutions.

Figure 1. b) makes a distinction between
scientists and non-academia stakeholders,
breaking down the scientists category into two
subcategories for making the number of soil sci-
entists in the scientist group visible.

Figure 1. ¢) is to show the numbers of
stakeholders relevant for the science-policy-
practice interface:
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o Science: all scientists irrespective of organ-
isational affiliation

* Policy: non-scientists policy makers

« Practice: all non-scientists other than poli-
cy makers

Figure 1. d) is a reflection on the conceptu-
al framework’s (Figure 3.) categories on human
activities (agriculture, non-agriculture). The cat-
egory ‘both’ indicates that the stakeholder has
interest in both sector relevant categories (e.g.
health authorities, environmental NGOs).

Stakeholder engagement process

Stakeholders have been engaged from the very
early stage of development of the scoping doc-
ument. Most of the stakeholders werehad been
individually approached and the project ex-
plained to them. Their reflections had influenced
the first draft of the document, particularly the
system-approach of Figure 3. The first draft of
the scoping document was sent to all stake-
holders, and based on their availability, they re-
flected on the content during semi-structured
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Figure 2. Visualisation of the methodology of developing a priority list of knowledge gaps: Iterative process and snowball
effect approach of literature review, engagement with stakeholders (feedback, validation) and prioritisation. (created by

the PRTT with PENSOFT).

interviews, or just shared their opinions in oral
or written form. Stakeholders’ comments were
integrated into the current version. Figure 2.
(Fig. 2) depicts this process based on the snow-
ball effect relevant to both stakeholders chosen
and literature reviewed.

Stakeholders expressed their views on the
presentation of the content and also on the is-
sues addressed in the document as a whole and
particularly in the figures, and tables. Stakehold-
ers’ opinions were summarised based on the
content of their feedback into two main catego-
ries: Format (F) (e.g.: transparency of the figures
and tables), and Substance (S), the latter cate-
gory being broken down into three subcatego-
ries depending on what action it required: to add
(Sa), to complete (Sc), to improve understanding
(Siu). The scoping document was modified after
assessment and evaluation of the comments. All
comments were relevant and useful. The format
of the figure has been changed, and some of the
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suggestions were integrated into the document.
However, not all of the comments were direct-
ly inserted, in some cases further elaboration of
the topic was sufficient. The same approach was
followed concerning this Revised document.

Table 3. summarises the comments on
the first drafts of the scoping document and
their acceptance by the main categories of
the stakeholders.

Table 3. Stakeholder’s reflections on the first draft (created
by the PRTT).

Stakeholder by Overall Categories Integrated into
categories feedback of specific the document
comments (X=yes, 0=no)
Scientist positive Sa, Siu X
Practice positive F, Sc, Siu X
Civil society positive Sa, Sc X
Policy positive Sa, Sc, Siu X
Business positive Sa, Sc, X
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Figure 3. Refined concept overview of System approach to identify interlinkages between domains related to soil pollution/

contamination (created by the PRTT).

State of the Art

The state of the art in the soil pollution and resto-
ration domain will be further reviewed during the
next phases of the project. In this chapter, we lay
down the principles and methods to develop a
comprehensive overview of the domain, and pro-
vide a summary of relevant available knowledge,
literature and stakeholders’ views and experi-
ences. It should be noted that the literature re-
view was limited to literature available in English.
Knowledge and knowledge gaps recognized and
published in other languages than English could
not be considered. However, taking the impor-
tance of site specificity and methodological di-
versity (relevant to pollution/contamination, pol-
lutants/contaminants) into account it is of the
utmost importance to gain insight of research re-
sults of the member states’ scientific community,
and the views of the stakeholders published and
expressed in their native language.

Based on scientific evidence, soil-pollu-
tion-relevant documents of the EU, the Food
and Agriculture Organization of the United Na-
tions (FAO), the United Nations Environment Pro-
gramme (UNEP) the Organisation for Economic
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Co-operation and Development (OECD), have
emphasised the significant negative impact of
soil pollution and land contamination on nature, its
ecosystem services and human life. However, the
use and the meaning of the terms ‘pollution’ and
‘contamination’ is not systematic in those docu-
ments and in the literature. The words ‘pollution’
and ‘contamination’ have different meanings but
are often used as if they are interchangeable (Ro-
driguez-Eugenio et al. 2018). EU documents like
the Zero Pollution action plan refer to the defini-
tion of the Directive 2010/75/EU, Article 3(2) (Eu-
ropean Parliament and European Council 2010):
‘Pollution means the direct or indirect introduction,
as a result of human activity, of substances, vibra-
tions, heat or noise into air, water or land which
may be harmful to human health or the quality
of the environment, result in damage to material
property, or impair or interfere with amenities and
other legitimate uses of the environment. While
in the FAO document on soil pollution a different
term is used: “soil pollution: refers to the presence
of a chemical or substance out of place and/or
present at higher than normal concentration that
has adverse effects on any non-targeted organ-
ism.” (Rodriguez- Eugenio et al. 2018, FAO 2020)
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The difference between the two terms are import-
ant. The EU term is more anthropocentric. Con-
cerning contamination, definitions on contaminant
or contamination vary according to the topic or
the approach of the document. While in the same
EU directive (European Parliament and European
Council 2010) the terms ‘contamination’, or ‘con-
taminant, are not defined, and contamination is
referred to only in the definition of the ‘baseline’
report, the SML proposal waiting for adoption pro-
vides for a broad definition of ‘contaminant’ by ex-
tending the scope of the term to a substance liable
to cause contamination of both soil and bedrock
or parent material. The FAO document on pollution
uses the term ‘contamination’ with no reference to
human activities, while the joint report of the FAO
and UN on the world’s natural resources defines
contaminant by using the 1SO definition (Rodri-
guez-Eugenio et al. 2018). While the differences
can be justified, it makes comparative analysis dif-
ficult, especially when data mining tools are used.

Similar issues should be solved concern-
ing the terms of ecosystem services due to the
differences between the terms of the Millenium
Ecosystem Assessment Report (Millennium Eco-
system Assessment 2005), the Intergovernmen-
tal Science-Policy Platform’s reports (Rounsevell
et al. 2018) and the EU’s applied Common Inter-
national Classification of Ecosystem Services
(Haines-Young and Potschin 2018).

We identified the diversity of the defini-
tions which makes harmonised review difficult.
However, the elaboration of the issues based on
the conceptual framework of the PRTT does not
require harmonisation at this stage. During the
next phase of the project the issues related to
definitions will be addressed. For the time being,
the terms are used as in the original sources.

2.1. Current state of the
knowledge on soil pollution
and restoration - System-
approach and conceptual
framework

A system-approach was developed to compre-
hensively tackle all aspects of the soil pollution

104

and soil restoration/remediation domain by
using the above-mentioned documents as a
starting point, the literature review listed under
Reference and the feedbacks from our stake-
holders. The following studies provided more in-
put for the development of the system-approach
framework shown in Figure 3. (Fig. 3). Adhikari
and Hartemink (2016), Babi Almenar et al. (2021),
Bouma (2014), Greiner et al. (2017), Jonsson and
Davidsdottir (2016), Lacalle et al. (2020), O'Rior-
dan (2021), Pulleman et al. (2012), Stolte (2016),
Vari et al. (2021), Velasquez and Lavelle (2019),
Villa et al. (2014), Stavi et al. (2016), Dushkova et
al. (2021), Wade (2022), JRC and Maes (2020),
Ponge (2015), Wood and Blankinship (2022).
Putting soil health into the centre of the
system-approach allows us to highlight all el-
ements that are relevant for reaching the Soil
Mission objectives of 2050, to demonstrate the
complexity of pollution issues including the in-
tertwined nature of policies and to provide a
framework for assessing the state of the art, the
knowledge gaps and to identify key research
questions. A schematic overview of this system
approach and the components of the system
are presented in Figure 3. It is an updated ver-
sion of the framework presented in the scoping
document as a result of the iterative process
(shown in Figure 2.) regarding the identification
and fine-tuning of the knowledge gaps/actions/
bottlenecks. Three main domains were iden-
tified as pollution relevant during the scoping
process along with the principles that should be
integrated into all domains, since they reflect on
pollution relevant social and economic aspects.
The development of the framework was driven
by the Soil Mission Objectives relevant to PRTT
which prioritise pollution from agricultural activi-
ties over other sources and sets specific targets
for agriculture, compared to the general targets
for other sources without making distinction be-
tween polluting human activities and/or sectors.

The three domains:

1. Soil pollution: identification and assess-
ment of the extent of polluting agricultur-
al and non-agricultural human activities,
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pollution originating from intentional or un-
intentional introduction of potential pollut-
ants including (i) inorganic substances, (ii)
organic), (iii) living organism (with charac-
teristics of becoming biological pollutant)
based on (i) soil descriptors and (ii) criteria
reflecting on soil health.

2. Effects of pollution: identification and as-
sessment of the extent of the impact of soil
pollution on i) soil properties and conditions
including linkages with other polluting path-
ways, ii) ecosystem services, soil functions
and biodiversity and iii) human livelihoods
reflecting on (a) the negatively affected
(directly or indirectly), and (b) the benefi-
ciaries of polluting activities (e.g. produc-
ers of polluting substances, polluters and
clean-up companies).

3. Solutions to soil pollution: Identification
of availability of and need for both solu-
tions focused on (i) pollution prevention and
(ii) restoration and remediation, as well as
(i) the assessment of the role of different
stakeholders influencing decision making
(scientists, business, civil society, consum-
ers) and policy decisions/frameworks in
view of (implementation of) solutions, (iv)
decision makers. Individual stakeholders or
groups of stakeholders can belong to one or
more of mentioned categories.

The relevant principles for reaching
soil pollution reduction targets
(2030 and 2050) that should be
integrated into all domains:

o Fairness and equality: distribution of and
access to natural resources should be fair
providing equal opportunity to everyone

 Intergenerational justice: refers to the
close relationship between generations and
mutual respect (Rockstrém et al. 2023)

o Precautionary Principle: allows measures to
be taken to avoid risk of environmental harm,
even in the face of scientific uncertainty

e Prevention Principle: allows preventive
measures to prevent the occurrence of en-
vironmental damage
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o Polluter Pays Principle: costs related to
environmental damage should be borne by
those who caused it

o Public Participation: the public is involved
and is given early and effective opportuni-
ties to participate in all stages of the pro-
cess elaborating preventive measures,
when all options are still open

o Eco-Economic Decoupling: breaking the
links between economic growth and envi-
ronmental pressure.

2.2. Summary of the State of
the Art on Soil Pollution and
Restoration

This part provides a summary of the state of the
artin the domain of soil pollution and restoration,
based on relevant literature reviewed and in-
puts of stakeholders gathered so-far. The state
of the art will be further developed during the
next phases of the project. Specifically, it will be
strenghtened with further reviews of key rele-
vant grey and scientific literature, as well as with
information and outcomes from relevant proj-
ects, and stakeholders’ inputs.

2.2.1. Sources and scope of soil
pollution

In this section, a first overview is given of im-
portant factors contributing to soil pollution. This
overview will be extended and further elaborated
during the following phases of the project. In sec-
tion 2.2.2 and 2.2.3, a first summary of important
impacts of soil pollution is provided. Two main
types of soil pollution are mostly considered in lit-
erature: point-source soil pollution and diffuse soil
pollution. However, based on the literature human
induced soil pollutions can be categorised by

o the source of pollution (point-source soil
pollution—diffuse soil pollution),

« main sectors and drivers identified for
pollution (industry, agriculture, waste, min-
ing, hazards, military activities and lately
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firefighting (European Commission: Europe-
an Environment, Joint Research Center et al.
2024). Note, that the six drivers (technolo-
gy and management, demography, policy
and institutional arrangements, economy,
nature and environment, socio-cultural con-
text) identified by SOLO regarding four land
uses (nature, urban, agriculture, forest) are
relevant to all TTs (Chowdhury et al. 2024).

o type of pollutants and their properties
having negative impact on soil properties,
soil biodiversity, soil functions/ecosystem
services and or human health,

o degradation pathways

o the direction of transportation via air and
water (to of from soil),

o decision making and the intention (inten-
tional/unintentional) of human activity relat-
ed to input of potential pollutants.

In the literature reviewed, there is no sepa-
rate category for decision-making, that reflects on
decisions on aimed at reaching a balance between
input and output of substances and where pollu-
tion is the result of an imbalance between input
and output. In the case of agriculture, farmers con-
tinuously need to make decisions by taking into
consideration all the aspects that may have an im-
pact on the balance (crop choice, soil’s properties,
site specific conditions, timing, etc.), while iln the
case of non-agriculture activities, the balance is
“established” during the development of the tech-
nology, thus the user of the technology does not
have to, and is not allowed to, make any decision
in this regard based on the technical descriptions
of the product and/or safety procedures.

Concerning nutrient (nitrogen and phos-
phorus) soil pollution, it is important to empha-
sise that it is caused by the surplus (input minus
crop uptake), while nutrient deficiencies (nega-
tive nitrogen and phosphorus) lead to nutrient
mining affecting soil fertility and the capacity of
soil production function (Rodriguez-Eugenio et
al. 2018, Majumdar et al. 2016). European Com-
mission: European Environment, Joint Research
Center et al. (2024) Majumdar et al. 2016Rodri-
guez-Eugenio et al. (2018)

Relevant information on some of the above
categories are summarized below.
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The source of pollution:
¢ Point-source soil pollution

Point-source soil pollution is associated with
sites where accidental or intentional spillage
took place, and current or former industrial,
waste disposal, mining, transport infrastruc-
ture and storage sites. Inorganic and organic
pollutants, heavy metals, Persistent Organic
Pollutants (POPs) and Polycyclic Aromatic Hy-
drocarbons (PAHs) are pollutants often involved
in point-source soil pollution. The revised ur-
ban wastewater treatment directive underlines
the negative impact of micropollutants and the
need to monitor and to introduce quaternary
treatment in order to remove micropollutants
like pharmaceuticals and plastics (European
Parliament and European Council 2024).
Point-source pollution also frequently in-
volves historic contamination. Available data on
the number and the area extent of contaminated
sites in the EU are characterised by large knowl-
edge gaps. The JRC estimated in 2018 that EU-
28 counted about 2.8 million potentially polluted
sites: sites where polluting activities are taking
place or took place (Paya Perez and E.N. 2018).
An EEA report published in 2022, based on na-
tional registries, showed that in 2016 1.38 mil-
lion potentially contaminated sites were regis-
tered. About two- thirds of contaminated sites
could be potentially historic (e.g. brownfields)
(EEA 2022b). In 2016, 115,000 contaminated
soils were estimated to be remediated in the
EU; about 8.3% of the currently registered po-
tentially contaminated sites. It is estimated that
at least 166, 000 additional sites are in need for
remediation or measures which reduce risk (EEA
2022b, European Commission 2023a). Historic
contaminated sites don't fall under current leg-
islation regarding industrial pollution prevention,
such as for example the Industrial Emissions
Directive (European Parliament and European
Council 2010). The the SML proposal, waiting
for adoption does include provisions on identi-
fication, assessment and management of con-
taminated sites, and aims to at least partly fill
this policy gap. Also, data on remediation of
contaminated sites are scarce/limited.
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o Diffuse Soil Pollution

Diffuse soil pollution involves soil pollution where-
by substance is transported under a gradient of
chemical potential, activity or concentration that
often spreads over large areas, and in general
doesn’t originate from an easily identifiable, sin-
gle source. These characteristics cause import-
ant challenges in assessing the full scope of dif-
fuse soil pollution. Diffuse pollution often leads to
chronic exposure to lower concentrations of pol-
lutants, while the health and ecotoxicological im-
pact of chronic exposure are difficult to assess,
and have been less researched. Agro-chemicals,
fertilizers and manure are important contributors
to diffuse soil pollution, as well as road traffic and
the diffusion of point-source pollution. Often,
diffuse soil pollution is further transported by air
and water. Important diffuse soil contaminants
are listed below (Paya Perez and E.N. 2018, IUNG
2019, Rodriguez-Eugenio et al. 2018).

Selection of key pollutants and
their properties:

» Pesticides

Agro-chemical soil pollution, including pesticides,
has been identified as a major soil threat (Stolte
2016). Different studies (Chiaia-Hernandez et
al. 2017, Hvézdova et al. 2018, Orton et al. 2013,
Pose-Juan et al. 2015, Qu et al. 2016, Silva 2022,
Silva et al. 2023, Franco et al. 2024) have already
provided data on the distribution of currently ap-
proved or banned pesticides in soils. However,
a comprehensive overview on pesticide residues
in the soils in Europe through regular monitoring
programs has been lacking, with existing data
originating from different methods and analyte
lists, and different sampling periods and strate-
gies used among different studies, etc. (Institute
of Environmental Sciences (CML), Leiden Uni-
versity and Royal HaskongingDHV 2024).

An important source of information on the
presence of pesticide residues in European soils
is the work of Silva et al. (Silva et al. 2019, Silva et
al. 2022, Silva et al. 2023, Silva 2022, Franco et al.
2024). A pioneer, large-scale study analysed 76
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pesticide residues in 317 EU agricultural topsoils
showed that 83% of soils contained 1 or more
residues, while 58% of soils contained mixtures
of different pesticides (Silva et al. 2019). These
findings were corroborated by a larger and more
comprehensive study, conducted in the frame-
work of the H2020 SPRINT project. A total of 209
pesticide residues were tested in 625 environ-
mental samples in different matrices (soil, crop,
outdoor air, indoor dust, surface water and sed-
iment), across 10 study sites (Silva et al. 2023,
Knuth et al. 2024). In 86% of the complete set
of samples at least one residue was measured,
and in 76% of samples mixtures of different pes-
ticides residues were found. 201 of the samples
were taken in soils, and revealed occurrence of
100 different pesticides. In soils of conventional
farms, 99% of the samples contained pesticides,
while 96% contained mixtures of at least two pes-
ticide residues. For soils of organic farms, these
numbers were 95% and 79% respectively.

The most frequently detected substanc-
es were p,p'dichlorodiphe-nyldichloroethylene
(DDE p,p'), aminomethylphos-phonic acid
(AMPA), a degradation product of glyphosate,
hexachlor-obenzene (HCB), chlorpyrifos, and
glyphosate. Total concentrations of pesticides in
conventional fields reached a maximum value of
28.678 ug/kg, and 5.458 ug/kg in organic soils.

The study of Silva et al. (2019) made use of
317 samples from the 2015 LUCAS survey (Land
Use/Cover Area frame Survey) (Orgiazzi et al.
2022, Franco et al. 2024). The 2018 LUCAS pro-
gram included a pesticide module, which may be
extended at least in terms of sample coverage
in future LUCAS programs, in line with the SML.

Although still limited, the available data
show that mixtures of pesticide residues are
the rule rather than the exception, in soil and
connected matrices. Large-scale, harmonized
monitoring of mixtures of pesticides residues is
urgently needed to evaluate risk for ecosystem
and human health (Silva et al. 2023), accounting
also for transport of residues in and on soil.

Limited data is available on the actual appli-
cation of (individual) pesticides, which will change
with the implementation of the Regulation on
Statistics on agricultural inputs and outputs (Eu-
ropean Commission 2022c). Pesticide sales data,
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a proxy for actual applications, show that pesti-
cide use in the period 2011-2022 has remained
relatively stable, hovering between 370 000 ton
and 320 000 (Eurostat 2022b), with sales for
some years, e.g. 2019 (333 000 tonnes) and
2022 (322 000 tonnes), decreasing, and for oth-
ers, e.g. 2020 (346 000 tonnes) and 2021 (355
175 tonnes), increasing (Eurostat2025).

o Persistent Organic Pollutants (POPs)

Important sources of POPs are emissions from
agriculture, combustion and industry, and from
disposed commercial products (e.g. plastic con-
taining POPs). The waste sector is relevant for
the more recent POPs, for example through ap-
plication of sludge. Data on POPs pollution of
soils are very limited. For example, a EU study
from 2011 (European Commission 2011) included
only limited data on 4 POPs pollutants in soils.
Under the Stockholm Convention, data on POPs
for 2021 (UNEP 2021a) were gathered, howev-
er important data gaps remain. Long-term POPs
pollution trends have shown no decline in Ben-
zo(a)pyrene (B(a)p) air pollution and high con-
centrations of polychlorinated dioxines and fu-
rans (PCDD/Fs) in Europe (TF HTAP 2021).

Also, for emerging contaminants, such as
the widely used Perfluoralkyl chemicals (PFASs),
an important lack of data exists. PFASs resist
degradation, and are easily transported over long
distances. PFASs pollution is widespread, includ-
ing in soils, water and waste. Remediation of sites
polluted with PFASs is technically challenging
and costly (Council of the European Union 2019).

» Pharmaceuticals (including veterinary prod-
ucts) and personal care products

An estimated 5,507.4 tonnes of active substance
of antimicrobial Veterinary Medicinal Products
were sold in Europe in 2020 (EU-27, UK, Iceland,
Norway and Switzerland). In the period 2011-
2020, a decrease of 43.2% was reported in sales
of the 25 countries providing annual data to the
European Medicines Agency (European Med-
icines Agency 2021). Through manure applica-
tion, veterinary products end up in the soil (Gros
et al. 2019), while pharmaceutical and personal
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care products can pollute soils through sewage
sludge application (Gworek et al. 2021). No com-
prehensive data exist on the scale of contamina-
tion of these compounds in the EU. The continu-
ous release of antibiotics into the environment is
of important concern. The majority of antibiotics
are not completely metabolised in humans and
animals, and a high percentage is discharged
into water and soil through animal manure, mu-
nicipal wastewater, sewage sludge and biosol-
ids (Perruchon et al. 2022). Antimicrobial drug
resistance (AMR) poses an important challenge
(Cycon et al. 2019). Manure can also be a source
of antibiotics from veterinary medicines (Antika-
inen et al. 2008, Panagos et al. 2022b).

« Plastics and microplastics

Plastic pollution, including microplastics and
nanoplastic has emerged as a growing concern
for soil health. Available data from Eurostat (Eu-
rostat 2022a) indicate that the generation of
plastic was increasing from 9.5 million tonnes
in 2004 to 17.2 million tonnes in 2018. The fate
of plastics once they enter terrestrial systems
is poorly understood. Agricultural activities are
a major source of soil plastic pollution, through
the use of mulching (estimated rate of 100, 000
tonnes per year in the EU), application of sewage
sludge (31, 000 to 42, 000 tonnes yearly) (Lofty
et al. 2022), polymer-coated fertilizer and pesti-
cides, plastic used in greenhouses, crop protec-
tion nets and irrigation systems (EIP AGRI 2020).
In addition to direct agricultural use, microplas-
tics reach soils through multiple diffuse sources,
leading to the widespread presence of microplas-
tics in the environment and in food. Degradation
of macroplastics and cosmetics are sources, and
also tyre wear is estimated to be an important
source of microplastic pollution (Baensch-Bal-
truschat et al. 2021). Furthermore, plastics can
enter soils through compost and organic amend-
ments, industrial activities, landfill emissions, and
mismanaged plastic waste. Even biodegradable
plastics, such as starch-based or polylactide
(PLA)- based films, are not exempt from con-
tributing to soil pollution. Although marketed as
environmentally friendly, these materials often
fail to fully decompose under field conditions.
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They tend to fragment into smaller particles,
adding to the pool of microplastics in soils (Meng
et al. 2023, Briassoulis 2004, Whitacre 2014 de
Souza Machado et al. 2018). The environmental
behaviour of these so-called bio-microplastics is
not well understood, and their long-term effects
on soil ecosystems, including microbial activity,
plant development, and pollutant transport, re-
main largely unknown. An important and under-
explored pathway of soil contamination is the
leaching of chemical additives from plastics (Ma-
can et al. 2024). Plastics often contain phthal-
ates, bisphenols and other additives, which may
leach into soil and groundwater. In addition, other
environmental pollutants (e.g. pesticides, heavy
metals, POPs) can adsorb on the surface of mi-
croplastics, potentially enhancing their mobility
and bioavailability in soils. This carrier effect rep-
resents a poorly understood risk to soil ecosys-
tems. Despite growing evidence of widespread
contamination, systematic data on the distribu-
tion, composition, and impacts of microplastics
in European soils remain highly limited. There is
also limited understanding of how microplastics
affect key soil functions such as nutrient cycling,
water retention, and soil biodiversity. Large-
scale, harmonized assessments are urgently
needed to better quantify the presence and risks
of microplastics in soils, especially in the context
of their interactions with other soil pollutants and
their persistence over time.

e Nutrients

More than 70% of ecosystem area in the EU is
at risk of eutrophication due to excess nitrogen
deposition (EEA 2024). In the EU+UK, a worrying
74% of agricultural area receives excessive nitro-
gen inputs. Also, phosphorus has accumulated
in agricultural soils in Europe, after the introduc-
tion of phosphorus-containing fertilizers in ad-
dition to manure. Large areas face surpluses of
phosphorus. The primary cause is fertiliser and
manure application, livestock density and soil
degradation (erosion and leaching) in agriculture
(European Commission: European Environment,
Joint Research Center et al. 2024, European En-
vironment Agency 2018, European Environment
Agency 2019, Velthof et al. 2011).
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This surplus of nitrogen in soil leads to an
acceleration of microbial nitrification that further
stimulates emissions of nitrous oxide, a highly
potent greenhouse gas (GHG), and contamina-
tion of groundwater via nitrate leaching (Kuypers
et al. 2018). Antikainen et al. 2008Panagos et al.
2022Majumdar et al. 2016European Commission:
European Environment, Joint Research Center et
al. 2024Rodriguez-Eugenio et al. 2018.

+ Heavy metals

About 6.24% of EU agricultural area is estimated
to contain high concentrations of heavy metals
(concentration above the guideline value set by
the Finnish legislation for contaminated soils in
agricultural areas) (Ministry of the Environment,
Finland 2007). Copper, lead and zinc are esti-
mated to be accumulating in EU soils, while for
cadmium a net decline is estimated (De Vries
et al. 2022). High concentrations of copper are
found in vineyards and orchards in humid cli-
mates, because of a high use of fungicides (Bal-
labio et al. 2018). Ballabio et al. (2021) found
that EU hotspots of mercury are located close to
mine areas, coal-fired power plants and chlor-al-
kali industries.

Concerning the assessment of soil heavy
metal contamination and remediation needs
Téth et al. (2016) highlights that European coun-
tries have a number of approaches to define risk
levels associated with different concentrations
of heavy metal in soil (Carlon 2007, Ferguson
1999). It underlines that the Finnish standard val-
ues represent a good approximation of the mean
values of different national systems in Europe
(Carlon 2007) and India (Awasthi 2000) and they
have been applied in an international context for
agricultural soils as well (UNEP et al. 2013).

Beyond agricultural soils, data on heavy
metals are limited. Panagos et al. (2021) esti-
mated that the average concentration of mer-
cury in EU topsoils amounted to 103g/ha. About
6 tonnes per year would be transferred down-
stream via transport of sediments (EU27 + UK).
Toth et al. (2016) indicated that heavy metal
concentrations in soils are very unevenly distrib-
uted through the EU, with many sites of highly
concentrated pollution.
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Pourret and Hursthouse (2019) have sug-
gested to use the term ‘Potentially Toxic Ele-
ments’ instead of ‘heavy metals’ when reporting
environmental research. During our further work
within the PRTT, we will explore this option.

2.2.2. Impacts of soil pollution on
biodiversity and ecosystems

Different studies have indicated important nega-
tive impacts of soil pollution on ecosystems and
their services (water purification, water reten-
tion, food production, biodiversity, etc.) (Mor-
gado et al. 2018, Rodriguez-Eugenio et al. 2018,
Panneerselvam et al. 2022).

For example, pesticide residues in soil hold
risk for biodiversity, ecosystems and their ser-
vices, and get transported to/taken up by other
matrices (water, air, indoor dust, food, micro-
organisms/microbiota, animals, humans). Many
pesticide residues are persistent, bioaccumu-
lative or toxic to non-target species (Silva et al.
2019, Silva et al. 2023.) Pesticide residues in soil
are shown to negatively impact soil macroorgan-
isms, microbiota and the microbiome (Gunstone
et al. 2021, Beaumelle et al. 2023, Pelosi et al.
2021, Riedo et al. 2021, Walder et al. 2022, FAO
et al. 2020). Pesticide pollution in soils can alter
processes in the rhizosphere, impact plant growth
and resistance against pests, alter the composi-
tion of soil microorganisms, and can lead to an
increase of pathogens and decrease of beneficial
organisms. Also, changes in nutrient composition
in roots, leaves, grape juice and xylem sap have
been observed after pesticide applications (Brihl
and Zaller 2021, Klatyik et al. 2023, Mandl et al.
2018, Ruuskanen et al. 2023, Zaller et al. 2018,
Zobiole et al. 2010). Negative effects on soil or-
ganisms also impact fauna dependent on soil or-
ganisms, e.g. farmland birds (Rigal et al. 2023).

The excess of fertilizer and manure cause
extensive negative impacts on waterways and
biodiversity. E.g. mycorrhizal fungi, essential for
many soil functions and services, are negatively
affected by excessive nutrients (Origiazzi 2016).
The multifunctionality of soils, and the trade-offs
between excess nutrients and other soil func-
tions, are assessed by Vazquez et al. (2020).
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Pharmaceuticals, such as antibiocs, can af-
fect soil microorganisms, for example by chang-
ing their enzyme activity and ability to metab-
olize different carbon sources, and by altering
the overall microbial biomass and relative abun-
dance of different groups (Cycon et al. 2019).

Microplastics can impact soil physico-
chemical properties (e.g. increase bulk density,
decrease porosity and water holding capacity),
soil micro-organisms, macro-organisms, plant
growth and can leach toxic chemicals (Lofty et al.
2022, Vasileiadis et al. 2018 Vaccari et al. 2022).

Although, negative (potential) impacts of
different soil pollutants on biodiversity and eco-
system functioning have been shown by a vari-
ety of studies, the long-term impact of the cu-
mulative effects of different soil pollutants or the
interactive effects of these different groups of
pollutants, being present concurrently in agri-
cultural soils (i.e. plastics and pesticides), on the
variety of different organisms exposed remains
unknown. In general, there is a lack of long-term
studies that also evaluate the impact of mixtures
and cumulative effects on a wide range of or-
ganisms and ecosystem services.

2.2.3. Impacts of soil pollution on
stakeholders

Different studies have indicated that soil pollu-
tion directly affects human health. Soil pollution
can contaminate food, which can pose risks for
human health. Many links have been described
between increased risks for a variety of illness-
es and health impacts, and pollutants frequently
found in soils, such as arsenic, lead, and cadmi-
um, organic chemicals such as polychlorinated
biphenyls (PCBs), PAHs, pharmaceuticals such
as antibiotics, pesticides and micro-plastics
(Rodriguez-Eugenio et al. 2018, Cox et al. 2019,
European Commission 2019, Lim 2021). Rodri-
guez-Eugenio et al. (2018) underline the poten-
tial risks of contaminated soil for human health,
including uptake from dust and vapours by farm
workers, skin contact and ingestion of soil. Also,
soil pollution/ contamination can be responsible
in many cases for vector-borne diseases such
as dengue, chikungunya, Zika, malaria, that are
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growing human health risk of the local popula-
tion getting infected and transmitting the infec-
tion exponentially. (Krystosik et al. 2020, FAO et
al. 2020, George et al. 2024).

Tolerable daily intake values for pesticide
residues are likely to underestimate the risk to
consumers, as they don’'t account for mixture
effects. Pathways other than ingestion or food,
such as inhalation or skin contact, are seriously
underestimated. Soil pollutants, such as pesti-
cide residues, can accumulate in the lighter top
layer of the soil, and get transported by the wind
and inhaled by animals and humans. Pesticide
residues have also been shown to accumulate in
indoor dust (Navarro et al. 2023). A recent paper
by Matsuzaki et al. (2023a) highlights the poten-
tial links between pesticide exposure and the mi-
crobiota-gut-brain axis.

Overall, there is an important lack of re-
search on the impacts of mixtures of soil pol-
lutants people are exposed to, including on
impacts on humans from long-term exposure
to soil pollutants. Here the “exposome” is rel-
evant: the measure of all the exposures of an
individual throughout a lifetime and how those
exposures relate to health. There is also an im-
portant link between the impact of soil pollut-
ants on (soil) biodiversity and human health,
as soil pollutants can lead to the selection for
harmful taxa and to an overall decrease in di-
versity of microbiota, also leading to effects
on the human microbiome. More and more re-
search also refers to the impacts of soil pollut-
ants on the gut microbiome, and potential links
with health conditions, including neurological
illnesses. Soil pollutants can lead to advantag-
es for harmful microbiota, for example through
antibiotics resistance (Roslund et al. 2024).

Soil pollution is associated with important
economic and social impacts and costs. For
example, soil pollution can negatively impact
health, land availability, water quality, water
retention, crop growth/food production and
other ecosystem services (Adhikari and Har-
temink 2016, Bouma 2014, Greiner et al. 2017,
Joénsson and Davidsdottir 2016, JRC and Maes
2020, Lacalle et al. 2020, O’'Riordan 2021, Pul-
leman et al. 2012, Stavi et al. 2016, Stolte 2016,
Velasquez and Lavelle 2019).
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2.2.4. Solutions to soil pollution

Solutions to soil pollution include prevention of
pollution and remediation/restoration of contam-
inated sites. Prevention of soil pollution (due to
intentional inputs of potential pollutants or unin-
tentional inputs of pollutants) is a must in order to
reach the Soil Mission Objectives. It is important to
underline, that on the one hand, routine handling
and use of chemicals in industrial activities often
result in negative impact on soil and/or groundwa-
ter. This may occur when certain chemicals — ear-
lier believed less harmful — prove to be hazardous
to human health or the environment. This has hap-
pened earlier with certain chlorinated hydrocarbon
compounds or with PFAS/PFOS compounds more
recently. On the other hand, pollution due to un-
intentional inputs of pollutants are most common-
ly caused by chemical accidents. Since 1992 the
OECD has published three guides on preventive
measures relevant to accidents. Acknowledging
the chance of accidents, the OECD developed its
guideline Prevent-Preparedness-Response around
three phase before, during and after accidents
(OECD 2023b). FAO publications also address-
es the prevention and risk management issues of
agriculture induced soil pollutions (Drechsel et al.
2023), or the hidden costs that includes economic,
environmental and social costs linked to the agri-
food system (FAO 2023, FAO 2024a).

Prevention of soil pollution is a cycle of
processes that consists of different, but inter-
linked phases:

» acceptance or refusal of a new substance
(including potential biological pollutants)
and/or process, technology for use,

o setting the rules for application (including
but not limited to legislation),

e application (including the monitoring and
surveillance of applications, enforcement of
laws, and preparedness to accidents) and
adaptation to the site specific conditions,

o adjustment if negative impacts occur (in-
cluding changesin using/applying substanc-
es/processes/technologies, and emergency
response in case of accidents),

e remediation to prevent further pollution (in-
cluding follow up to incidents).
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Below, there are we present exam-
ples inof agricultur ale and non-agricultural
soil pollution situations showing on how the
phases of prevention and remediation/ resto-
ration are interlinked.

Agriculture

Different practices and management tools are
available to decrease soil pollution. IPM, Inte-
grated Crop Management (ICM) and agro-eco-
logical practices have been shown to provide
effective approaches to minimizing inputs of
pesticides and fertilizers, and maximizing eco-
system functioning and services, such as bi-
ological pest control. These approaches are
based on increasing the resilience of the crop,
while agro- chemicals such as pesticides are
only used as a last resort, if needed, instead of
prophylactic or calendar-based practices (Ro-
driguez-Eugenio et al. 2018, IPM Works 2022).
Different EU legislations and initiatives are in
force or in development which can contribute
to reduction of soil pollution originating from
agricultural activities.

Non-agricultural soil pollution

Remediation techniques are often divided into
in situ (on the site) and ex situ (off the site)
remediation, and include physical, chemical
and biological treatments. Physicochemical
treatments are often characterized with high
speed and efficiency, but also with high costs
and labour, and potential destruction of soil
functionality. The field of remediation tech-
niques has developed over time to a focus on
effective restoration of soil quality and pres-
ervation of the environment, while minimizing
the damage caused by clean-up interventions.
Recent developments have also reflected the
aim to promote clean-up strategies which
also address climate change effects (Grifoni
et al. 2022). Several in-situ chemical treat-
ment technologies are emerging, including
In-Situ Chemical Oxidation (ISCO) and In-Situ
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Chemical Reduction (ISCR) methods. Biologi-
cal treatments provide eco-friendly features
and larger social acceptance, but often require
long periods. A wide variety of biological tech-
niques have been developed and successfully
applied. Microbiological methods aim to utilize
the decay processes, when selected microbes
utilize the pollutants for their growth, finally
resulting in the elimination of the pollutants.
These methods are widely used in practice.
Lacalle et al. (2020) provide an overview
of biological methods of polluted soil remedi-
ation for an effective economically-optimal re-
covery of soil health and ecosystem services.
Methods include phytoremediation, phytoex-
traction, phytostabiliziation, phytomanage-
ment, bioremediation and vermiremediation.
Specific challenges are associated with soils
contaminated with multiple pollutants. The in-
teraction between organic and inorganic pol-
lutants can change bioaccessibility and sol-
ubility of pollutants and their biotoxicity and
metabolic processes. For pollutants that are
relatively new to the environment, such as
PFAS, important challenges remain due to un-
known pathways of degradation. Also, com-
petition or joint-adsorption on binding sites
poses a challenge. For mixed contaminated
soils, successful combinations of chemical and
biological remediation techniques have been
discussed, although more research is need-
ed (Aparicio et al. 2022, Lacalle et al. 2020).
More research is needed on the potential of
nature-based solutions and the use of micro-
organisms for bioremedation processes. In
general, more research is needed to improve
efficiency, feasibility, costs and time- efficien-
cy of remediation techniques for a variety of
different contaminants and soil conditions. As
mentioned in the documents, those are sig-
nificant knowledge gaps (Aparicio et al. 2022,
Grifoni et al. 2022, Huysegoms and Cappuyns
2017, Lacalle et al. 2020, Ministry of the En-
vironment, Finland 2007, Mulligan et al. 2001,
Smith 2010). Different EU legislations and ini-
tiatives are in force or in development which
can contribute to reduction of soil pollution
originating from industry, traffic and waste.
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2.2.5. Social and economic tools
to prevent soil pollution and their
fitness- for-purpose

Important reoccurring aspects regarding so-
cio-economic and market tools relevant to
tackling soil pollution are the need for imple-
mentation of the polluter pays principle, as well
as for the targeted use of public funds. Current
legislation and funding does not always secure
linkages between funding and protection of
the environment and enhancement of ecosys-
tem services (OECD 2023a). The polluter pays
principle is insufficiently included in legislation,
while the loss of ecosystem services associat-
ed with soil degradation is not integrated into
economic optimisation of economic actors.
Stakeholders underlined that several questions
should be raised, such as: Is it possible to de-
vise fiscal or other financial measures to miti-
gate pollution in a way that spreads the cost of
mitigation in an equitable fashion thus dimin-
ishing political opposition? To what extent is
it possible to add self-regulation to the range
of regulatory mechanisms? What is the price
structure of the food chain downstream from
the farm gate to the final consumer, and how
it may affect the use of the polluter pays prin-
ciple? How to tackle long-term effects of pol-
lution and how to make the polluter account-
able for it? How to deal with pollutants crossing
borders? How could and should different leg-
islations be applied? Is there an alternative to
public funding of historic pollution where the
polluter no longer exists? The answer to the
question ‘Who should cover remediation costs
of historic pollution? remains often a challenge
(European Commission 2023a). An important
potential instruments is a pollution levy, e.g. a
pesticide levy, which is used in Denmark (Niel-
sen et al. 2023). Austria has a well-designed
tax on landfill, incineration and other forms of
waste disposal: the waste disposal tax (Altlas-
tenbeitrag) (European Commission 2021c). The
questions raise the general question on ‘What
principle/principles should be applied?’. All prin-
ciples mentioned in the conceptual framework
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should be considered during the review of the
tools. The application of the precautionary prin-
ciple is utmost important in preventing soil pol-
lution and its negative impact.

2.3. Prioritization of
knowledge gaps

In the initial phase of the project, the PRTT car-
ried out a first appraisal of knowledge gaps re-
garding soil pollution and restoration, based on
an assessment of available knowledge gaps'’ re-
views, findings of former relevant projects, a re-
view of a selection of key grey and scientific liter-
ature and exchanges with stakeholders involved.
The preliminary knowledge gaps identified in that
first phase were divided into four groups:

1. Definitions, scope, sources and loads of
soil pollution,

2. Affected soil properties, ecosystem ser-
vices and impacts on livelihoods,

3. Affected/Involved stakeholders and their role,

4. Solutions to soil pollution and needed
conditions.

Fig. 4 summarised these initially identified
knowlede gaps, in their respective groups.

The knowledge gaps identified during the
first phase show that the first two groups of
knowledge gaps in Figure 4. fall mainly within
the first two domains (soil pollution and effects
of pollution) of the conceptual framework (Fig-
ure 3.), while the second two address the issues
of the second and third domains (effects of pol-
lution, solutions to pollution) of the framework.

The previously identified knowledge gaps
were reviewed, and reformulated through an
iterative process with stakeholders described
above. During the prioritization process, which
included voting on knowledge gaps by stake-
holders involved in the different SOLO TTs
during 1) an in person meeting in Sofia, Bulgaria
on 5-6 November 2024, and 2) an online meet-
ing on 27th November 2024, the knowledge
gaps below in Table 4. were identified as the top
ten knowledge gaps. Each knowledge gap was
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pr

Affected soil properties,
soil biodiversity,
ecosystem functioning
and services

Definition, scope,
sources and loads
of soil pollution

Affected/Involved Solutions to
Stakeholders and their role  Soil Pollution and needed
(health, social and conditions

economic impacts)

_4

Need for further research and
enhanced understanding of:

- The effects (toxicity) of both
individual pollutants and
mixtures of pollutants
(cumulative/synergistic effects)
on soil characteristics and
functioning

- The behaviour or soil
contaminants: persistence,
bioaccumulation and
degradation of soil
contaminants

- How soil pollution affects,
directly and long-term, soil
biodiversity, the interactions
between soil organisms and soil
processes and the provision of
ecosystem services

- The impacts on ecosystems
and their functioning/services
beyond soils, e.g. impact on air
and water quality, linkages
between belowground and
aboveground biodiversity (e.g.
insects)

- Baseline period/situation to
assess progress towards targets

- Soil descriptors and associated
criteria fit for purpose to assess
healthy soil functioning

N Y,

Need for further research and
mhanoed undermndlng af

. th :
are affected by soil pollution

- The effects of both individual
pollutants and mixture of
pollutants -
(cumulative/synergistic effects)
on human health. The direct
and long-term health, social and
economic impacts of soil
pollution

- How stakeholders can affect
soil pollution, policy, research
and innovation

- The linkages between different
stakeholders

- The impact of soil pollution on
land use

- How different stakeholders
would benefit from decreased
soil polluti‘on/enhanced
restoration

- The incentives, barriers (social,
ﬁnam: ,...) and bcxttlenecks
le
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prachces, changmg behakurs,
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Figure 4. Overview of preliminary identified knowledge gaps regarding soil pollution and restoration (created by the PRTT).

identified either as a ‘knowledge development
gap’ and/or a ‘knowledge application gap’.

3. Roadmap for PRTT

This chapter provides a review of the knowledge
gaps. It starts with the top 10 knowledge gaps iden-
tified in the rank order indicated in Table 4. Com-
pared to the discussion of the three key knowledge
gaps under 3.1., the other top seven knowledge
gaps’ discussion under 3.2. is shorter in length (as
required by the template provided to each TTs by
the project’s leadership) and thus in depth. The
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rank order of the knowledge gap (within the top
10) is indicated by the number in the brackets.
All introductions of the knowledge gaps include:
1. a summary, and information on 2. the state of
the art, on 3. actions and on 4. bottlenecks. Sec-
tion 3.3. provides the list of the knowledge gaps
currently identified. For the top ten knowledge
gaps the information includes: 1. ranking, 2. title,
3. shortened summary, 4. type of the knowledge
gaps, 5. actions, 6. type of actions, 7. timeframe for
actions, 8. bottlenecks. For the knowledge gaps
outside of the top 10 knowledge gaps only the title
and a short description is given. The number in the
‘ranking’ column does not reflect priority.
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Table 4. Ranking of the top 10 knowledge gaps identiefied (a full list of all identified knowledge gaps is given in section 3.3).

Rank Knowledge gap Type of knowledge g ap

1 Impact of soil pollutants (individual and mixtures, short-term and long-term) on
soils and soil ecosystem services

Knowledge developmen Knowledge application | t gap and gap

2 Socio-economic and market tools to prevent soil pollution and their fitness-
for- purpose

Knowledge developmen Knowledge application |t gap and gap

3 Impact of soil pollutants (individual and mixtures, short-term and long-term) on
human health

Knowledge developmen Knowledge application | t gap and gap

4 Data gaps on soil pollution and lack of systemized monitoring and
methodologies

Knowledge developmen Knowledge application | t gap and gap

5 Technical/practical tools to remediate soil pollution and restore soils Knowledge developmen Knowledge application | t gap and gap

6 Behaviour/transportation and fate of soil pollutants and link of soil pollution
with water and air

Knowledge developmen Knowledge application | t gap and gap

7 Baseline, indicators/descriptors and quality thresholds/criteria Knowledge developmen Knowledge application | t gap and gap
8 Overall impact of soil pollution on wider ecosystem functioning (beyond soils) | Knowledge developmen Knowledge application |t gap and gap
9 Technical/practical tools to prevent agricultural soil pollution Knowledge developmen Knowledge application |t gap and gap
10 Knowledge gaps regarding the implementation and upscaling of preventative Knowledge application gap

measures to address agricultural soil pollution

Table 5. Links between the knowledge gaps (as currently definied) and the conceptual framework’s domains. 1. Soil Pollution:
SPo: origin of soil pollution, SPi: input (properties of polluting agent); 2. Effects of Pollution: EPpc: Effect on soil properties/con-
ditions, EPfesb: Effect on soil functions and ecosystem services, biodiversity, EPhul: Effect on human livelihood; 3. Solutions to
soil pollution: SSPdec: decision for action (prevention/remediation), SSPprin: principles of the conceptual framework, SSPprev:
prevention against polluting event or process, SSPrest: restoration/remediation, risk reduction.

Rank Knowledge Gaps Soil Pollution Effects of Soil Pollution Solutions to Soil Pollution
1. Impact of soil pollutants (individual and mixtures, short- term and long- term) SPo SPi EPpc EPfesb SSPdec SSPprev
on soils and soil ecosystem services
2. Socio-economic and market tools to prevent soil pollution and their fitness- SPo SPi EPhul SSPprin SSPdec SSPprev
for- purpose SSPrest
3. Impact of soil pollutants (individual and mixtures, short- term and long- term) SPo SPi EPpc EPfesb EPhul SSPdec SSPprin
on human health
4. Data gaps on soil pollution and lack of systemized monitoring SPo SPi EPpc EPfesb EPhul SSPprev
5. Technical/practical tools to remediate soil pollution and restore soils SPo SPi EPpc EPfesb EPhul SSPrest SSPdec
6. Behaviour/transportation and fate of soil pollutants and link of soil pollution SPo SPi EPpc EPfesb EPhul SSPdec SSPprev SSPrest
with water and air
7. Baseline, indicators/descriptors and quality thresholds/criteria SPo SPi EPpc SSpdec
8. Overall impact of soil pollution on wider ecosystem functioning (beyond soils) SPo SPi EPpc EPfesb SSPdec
9. Technical/practical tools to prevent agricultural soil pollution SPo SPi SSPdec
10. Knowledge gaps regarding the implementation and upscaling of preventative EPhul SSPdec SSPprev

measures to address agricultural soil pollution

The introduction of the top 10 knowledge As it is shown by the Table 5., the knowl-

gaps does not cover all three domains of the
conceptual framework. The focus reflects the
main issues elaborated in the referenced liter-
ature. Table 5. below links the knowledge gaps
to the conceptual framework’s domains. It is im-
portant to note that the indication of a domain
does not mean that all aspects of it are dis-
cussed under the given knowledge gap.
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edge gaps are not yet linked to all domains of
the Conceptual Framework. This exercise will
be completed in the next phase. Table 5. in its
present form serves as a guideline towards the
future work of the PRTT. PRTT’s aim is aim to
provide an optimal level of generalization of the
issues relevant to all domains of the conceptual
framework, and to the Soil Mission Objectives.
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3.1. Key knowledge gaps

Under this heading the top three knowledge
gaps which received the most votes during the
prioritisation process are introduced.

3.1.1. Impact of soil pollutants
(individual and mixtures, short-
term and long- term) on soils and
soil ecosystem services

Summary of the Knowledge Gap (Knowledge
Gap1)

The impacts of soil pollution are far-reaching
and multifaceted, and pose significant chal-
lenges to environmental sustainability, public
health and socio-economic well-being. Signifi-
cant knowledge gaps exist concerning the im-
pact of soil pollutants on soil characteristics,
including on soil properties, soil biodiversity,
soil functioning, aboveground organisms and
the delivery of ecosystem services. For the ma-
jority of pollutants, there are no comprehensive
(eco)toxicity data, and hence risk assessments,
available (e.g. pesticides, volatiles, antibiotics,
microplastics). Large data gaps remain on i)
cocktail/mixtures and ii) cumulative and syner-
gistic effects, while mixtures of soil pollutants in
soils reflect the factual status. Large data gap
exists on cocktail/mixture/ cumulative/syner-
gistic effects, including a general lack of knowl-
edge on individual substances (presence and
interactions in soil, transport and fate, mobility
and persistence, ecotoxicological properties,
bioaccumulation and bioavailability, exposure of
and risk to the environment).

State of the Art

The impacts of soil pollution are far-reaching
and multifaceted, and pose significant challeng-
es to environmental sustainability, public health
and socio-economic well-being (De Vries et al.
2022European Commission: European Environ-
ment, Joint Research Center et al. 2024). Soil
pollution is a main factor of decline in soil bio-
diversity (Tibbett et al. 2020 Gardi et al. 2013).
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When data on toxicity and risk are available,
they often focus on one pollutant and source, and
are limited to a small set of test organisms, usual-
ly single species that are easy to breed, during a
short time frame, focusing on a single toxic end-
point, in controlled (laboratory) conditions.

Cocktails of pollutants in soil include both
co-occurrences of different pollutants within the
same group of chemicals (e.g. different pesticides)
and, as the co-occurrence of pollutants from dif-
ferent chemical groups (e.g pesticides and plas-
tics). It is essential that the impact of long-term
effects of mixtures of pollutants in field conditions
is taken into account, to assess the probable im-
pacts of soil pollution on long-term soil health and
ecosystem functioning. Although available re-
search clearly shows the extensive impacts and
risks of soil pollution on soil characteristics, bio-
diversity and the delivery of ecosystem services,
large data gaps still remain. The high complexity
of soil and interactions of soil compounds, organ-
isms and contaminants provides a large challenge
in assessing the full impact of soil pollution on the
delivery of ecosystem services (Rodriguez-Eu-
genio et al. 2018, Vieira et al. 2024).

The knowledge gaps regarding the impact
of soil pollution on soil biodiversity and soil eco-
system services are multifactorial. 1) To date, the
full scope of soil pollutants remains unknown,
with only a selection of pollutants being mea-
sured, and harmonised monitoring data lacking.
2) Also, for the pollutants for which more data
are available, comprehensive risk assessment
is mostly lacking, as risk assessment most-
ly focuses on single pollutants and their short-
term impact on single organisms, as described
above. 3) Although available research shows the
presence of complex mixtures of soil pollutants
mostly everywhere, the impact of the combined
effects of these mixtures is largely unknown. For
a number of decades, it has been recognized
that an integrative approach focused on complex
mixtures of pollutants is needed to increase un-
derstanding of their full extent and potential im-
pacts (Reeves et al. 2001, Albert 1987). Available
research shows the extensive negative impact of
soil pollution on biodiversity and ecosystem ser-
vices. Some first steps have been taken to work
towards more integrative approaches to assess
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the full impact of soil pollution on soil biodiversity
and ecosystem services, and a more integrative
assessment of soil pollutants. The SML includes
calls for chemical and biological indicators as soil
descriptors, for the assessment of soil health.
Andres et al. 2022 suggested an indicator for
in-soil organisms, and used ecotoxicological
data, chemical occurrence and habitats for the
indication of risks. However, available knowl-
edge is still very limited, and extensive knowl-
edge gaps remain. Based on review of literature
and exchange with stakeholders, the following
main groups of pollutants are addressed under
this knowledge gap: pesticides, plastics, vet-
erinary medicines, metals, excess of nutrients,
pesticides and emerging contaminants/forever
chemicals, with references to common features
and differences. During the further work within
the PRTT, the range of contaminants discussed
might be further expanded.

All mentioned pollutants are major soil con-
taminants. They are either intentionally (pesti-
cides, nutrients) or unintentionally (metals, veter-
inary medicines, plastics) released in soils where
they impose adverse effects on non-target or-
ganisms. Amongst them, soil macro-organisms,
mesofauna and microbiota constitute a key pro-
tection goal considering their contribution in key
ecosystem services as they modulate soil fertility
and soil structure, produce and store GHG, and
degrade organic pollutants (Fierer 2017). The im-
pact of soil pollution also reaches much further
than soils, and leads to contamination of the wid-
er, aboveground ecosystems, air and water bod-
ies (groundwater, drinking water, freshwater and
marine water) (Albaseer et al. 2025, Vieira et al.
2023). Despite the common features, all of them
have their own characteristics.

Pesticides

Use of pesticides is widespread, and diffuse
pollution by agro-chemicals has become a ma-
jor soil threat (Stolte 2016, Silva et al. 2019; FAO
et al. 2020, Vieira et al. 2023). Sabzevari and
Hofman (2022) reviewed the worldwide occur-
rence of Commonly Used Pesticides (CUPs) in
agricultural soils. Franco et al. (2024) identified
risks for in-soil organisms on an European scale.
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Complementary, Silva et al. (2023) high-
lighted the presence of pesticide residues across
European environments, underscoring the need
for better public data accessibility to track and
eventually also regulate such pollutants. Nowa-
days, multiple efforts are made to create such
datasets which will hopefully help us in the fu-
ture (e.g. IPCHEM, NORMAN). In general, current
risk assessment does not capture cumulative,
combined and chronic exposure to pesticides,
and resulting impacts on soil biodiversity, overall
biodiversity and ecosystem functioning (Honert
et al. 2025, Devos et al. 2022, Bopp et al. 2019,
Sousa et al. 2022, EEA 2023b, van Gestel et al.
2020, Knillmann and Liess 2021). Risk assess-
ment and research also focus mostly on the
impact of single active substance or pesticide
products, while large data gaps remain on the
impact of tank mixtures (when different pesti-
cide products are mixed and applied together)
and environmental mixtures (the presence of
different pesticide residues and other pollutants
in the environment). More research is available
on the toxicity and impact of active substances
of pesticides, than on the impact of pesticides
products (active substance, co-formulants and
adjuvants), while pesticide products are often
more toxic than the active substances (Mesnage
and Antoniou 2018, SAPEA 2018). Thresholds
for a few pesticide residues, metabolites have
been part of the legislation of a few European
countries (Carlon 2007), but mostly for current-
ly banned and highly persistent pesticides (e.g.
DDTs, HCHSs, Atrazine). Furthermore, the lack
of data on pesticide mixtures in soils, as well
as data on the total load of diffuse contami-
nation in soils, have prevented validation and
improvement of current risk EU assessment of
active substances, degradation of products and
pesticides. The latter is currently based on pre-
diction of environmental concentrations, based
on recommended application rates. Only a few
species of animals are used in EU pesticide risk
assessment. Research has pointed to the lack of
field data and lack of information on mixture and
cumulative effects on soil organisms, including
non-standard and native species and commu-
nities, soil functioning and ecosystem services
(Geissen et al. 2021).
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As mentioned earlier, Silva et al. (2019)
found that 80% and 58% of 317 soil samples
across the EU contained respectively pesticides
and mixtures of pesticides, with in total 166 dif-
ferent pesticide combinations. Silva et al. (2023)
also measured pesticides in 201 soil samples
in the framework of the H 2020 Sprint Project.
They found 100 different pesticides, with the
large majority (79%-99%) of samples containing
mixtures of pesticides. Soils under organic farm-
ing mostly contained persistent, long-banned
pesticides, while soils under conventional farm-
ing contained also recently banned and currently
approved pesticides. The researchers conclude
that non-approved compounds represent a sig-
nificant part of the cocktails found, and should be
accounted for in risk assessment. They also rec-
ommend re-evaluation of pesticides persistence.
They point out that European Food and Safety
Authority (EFSA) risk assessment currently focus-
es on single active substances, standard ecotox-
icological tests and modeling exercise, with a few
standard organisms, endpoints and conditions.

Research shows that pesticide contamina-
tion extends to landscape level, far beyond farm-
land. E.g. Brihl et al. (2024) found widespread
contamination of soils and vegetation with pes-
ticides and Silva et al. (2023) found widespread
contamination of soils, air, water, sediments and
indoor dust. Also in nature reserves, insect com-
munities are not safe from pesticide exposure
(Briihl et al. 2021). Briihl and Zaller (2019) pointed
out as well that long-term and cumulative effects
of pesticide mixtures are not considered in the
current risk assessment of EFSA. They highlight
as well that indirect food web effects of pesti-
cides are not considered: e.g. the reduction of
flowers and hence of food sources of bees is
not included in current risk assessment. In 2024,
EFSA received two mandates from the EC to re-
view the outdated risk assessment for plant pro-
tection products. An outline for the revision of the
terrestrial ecotoxicology guidance document and
for the development of an approach on indirect
effects has been already published (EFSA 2025).

Honert et al. (2025) underline that current
pesticide use is recognised as the largest de-
liberate input of bioactive substances into ter-
restrial ecosystems, and one of the main factors
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responsible for the current decline in insects
in agricultural areas. Analysing 93 active sub-
stances in monthly soil and vegetation samples
over a year, a total of 71 active substances were
found, with up to 28 in single soil samples. The
concentration in the topsoil remained almost
constant year-round, and peaked in vegeta-
tion in summer. The authors call this particularly
worrying, as adult insects are mainly active (in
vegetation) in summer, and adult insects or lar-
vae living in the soil are chronically exposed to
several pesticides. They point out that the con-
stant presence of pesticide mixtures is not part
of the regulatory environmental risk assessment
procedures for pesticide regulation. Mixtures are
addressed only occasionally in formulated prod-
ucts with up to 4 active substances. Therefore,
authorities are urged to ensure that chronic con-
tamination of complex pesticide mixtures is in-
corporated in authorisation procedures and risk
assessment. Additionally, given that large-scale
contamination is expected throughout the year,
and only a fraction of used active substances is
analysed, the calculated risks are supposed to
be even higher. The authors conclude that only
reductions in pesticide risk can change the cur-
rent observed declines in insects, and that even
with refinements of, for example focusing on
regulatory adjustments, a comprehensive EU
strategy must be adopted to decrease overall
pesticide use and transition toward ecological
farming methods. (Briihl and Zaller 2019, Honert
et al. 2025, Mauser et al. 2025).

The adverse effects of pesticides on ben-
eficial soil fungi and earthworms and other soil
macro- and microbiota were described by sever-
al authors (Pelosi et al. 2021, Riedo et al. 2021,
Klatyik et al. 2023). Wan et al. (2025) reviewed
1705 studies, concluding that pesticides cause
negative responses of growth, reproduction, be-
haviour and other physiological biomarkers for
non-target plants, animals (invertebrates and ver-
tebrates) and microorganisms (bacteria and fun-
gi). Similar to other experts, the authors underline
the need for better risk assessment, as risk as-
sessment currently focuses on a limited number
of easily cultured model species, and are there-
fore unlikely to capture the variety of responses
to pesticide exposure seen across the diversity of
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species and communities found in both managed
and natural systems. Therefore, there is a need
of cross-taxa synthesis of pesticide effects, and
for integrating long-term low-level exposure, cu-
mulative effects at the landscape level and syn-
ergistic interactions between active ingredients.
The authors suggest that post-licensing biodi-
versity monitoring could help address this prob-
lem, and conclude that unless changes occur, the
hazard of severe, unexpected and long-term im-
pacts on biodiversity and ecosystem functioning
will remain unacceptably high (Wan et al. 2025).
Kotschik et al. (2024) and Pieper et al. (2023) also
claimed for the feedback from monitoring results
in regulation of chemicals.

Gandara et al. (2024) screened more than
1000 agrochemicals in a fruit fly model and
found that the majority had behavioural effects
at sublethal levels and even more compromised
survival after acute exposure. When combining
agrochemicals at field- realistic levels, the re-
searchers found widespread changes to larval
development, behaviour and reproduction.

Beaumelle et al. (2023) reviewed available
data on the impact of pesticides on soil inverte-
brate communities, looking at abundance, bio-
mass, richness and diversity of natural soil fauna
communities across a wide range of environmen-
tal contexts. Their review shows that pesticides
overall decreased the abundance and diversity
of soil fauna communities, with more outspoken
effects on diversity than on abundance. Scenar-
ios with multiple substances, insecticides and
broad-spectrum substances showed most det-
rimental effects. There was no evidence found
that the effects of pesticides dampen over time:
long-term and short-term studies showed similar
effect sizes. The study found that pesticide use
erodes a substantial part of global biodiversity,
having significant detrimental non-target effects
on soil biodiversity, and threatening the health
of ecosystems. Gunstone et al. (2021) reviewed
nearly 400 studies on effects of pesticides on
non-target invertebrates which have egg, larval or
immature development in the soil. The reviewed
studies included unique species, taxa or com-
bined taxa and different pesticide active ingredi-
ents or unique mixtures of active ingredients. Of
the 2800 tested parameters, with each parame-
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ter representing a change in a specific endpoint
after exposure of a specific organism to a specif-
ic pesticide, 70.5% of tested parameters showed
negative effects, while 1.4% showed positive ef-
fects and 28.1% showed no significant effects.
The authors conclude that all types of pesticides
pose clear hazard to soil invertebrates, with evi-
dent effects for all studied classes of pesticides,
in a wide variety of soil organisms and endpoints,
and in both laboratory and field studies.

Franco et al. (2024) performed an evalu-
ation of the ecological risk of pesticide residues
from the European LUCAS Soil Monitoring 2018
survey, which assessed 118 pesticide residues in
more than 3773 soil sites across whole Europe.
The study presents two mixture indicators for soll
based on the lowest and median of available No
Observed Effect Concentration (NOEC) from pub-
licly available toxicity datasets, to respond to the
policy need to develop risk-based indicators for
pesticides in the environment. The mixture risk
indicator based on the NOECsoil,min which is cur-
rently used in the ERA of ppp exceeds 1in 14% of
the sites and 0.1in 23%. The exceedance of 1, indi-
cates a high risk for in-soil organisms due to anal-
ysed mixtures in soil samples. Across the 73 sites
monitored in LUCAS 2015 and LUCAS 2018 both
campaigns, the risk indicator increased slightly.

Undesirable effects on soil microbiota can
now be well-documented using advanced and
standardized molecular tools (Karpouzas et al.
2014a, Karpouzas et al. 2014b; Vasileiadis et al.
2018 Vischetti et al. 2020). However, at regulato-
ry level obsolete low- resolution methods like the
OECD 216 N transformation test are still in place to
evaluate toxicity of pesticides on the soil microbi-
ota (Karpouzas et al. 2022; Pedrinho et al. 2024).

Ammonia-oxidizing microorganisms (AOM),
modulating nitrification in nitrogen cycling, and
arbuscular mycorrhizal fungi (AMF), obligate
symbionts of most terrestrial plants, have been
identified as potent bioindicators to assess the
toxicity of pesticides on the soil microbiota (Kar-
pouzas et al. 2016, Ockleford et al. 2017). New
methods like amplicon sequencing in combina-
tion with tools like Species Sensitivity Distribu-
tions (SSDs) could be used to quantify effects
of pesticides, although standardization of these
approaches is still missing.
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Shortcomings in risk assessment are also
underlined by PAN Europe 2024, who highlights
that the tests within the EU guidance document
on ‘non-target’ arthropods are very limited and
insensitive, allowing the mortality of as much
as 50% of the population with the spraying of a
single pesticide. They call for the need for inde-
pendent (from business interest), transparent,
science-based guidance documents to allow for
the effective protection of the environment, in-
cluding non-target arthropods.

Drift of pesticides, for example through run-
off, the transport of pesticide residue attached
to soil particles and volatilization from soils, is
also described by many researchers as a dan-
ger to biodiversity (Albaseer et al. 2025). Drifting
pesticides, find the authors, have profound im-
pact on biodiversity, harming non-target plants,
insects, fungi and other organisms both near ap-
plication sites and in distant ecosystems. Pesti-
cide drift has been linked to over 50% reductions
in diversity of wild plants, within 500 m of fields.
Plastics are emerging and persistent contaminants
whose relevance for soils was highlighted relatively re-
cently (Nizetto et al. 2016). Weathering of plastics gives
birth to micro-plastics (< 5 mm) which could impose ad-
verse effects on the soil fauna (Huerta Lwanga et al. 2016,
Quigley et al. 2024), affect soil structure and porosity and
eventually impose undesirable effects on the soil micro-
biota (de Souza Machado et al. 2018). This could be as-
signed to additives that could diffuse from plastics in the
soil matrix and have direct toxic effects on the soil micro-
biota (Zhu et al. 2022). Beyond that, the surface of plastic
fragments constitutes a unique micro-niche for microbi-
al colonization (called plastisphere) where other organic
pollutants could adsorb and directly interact making plas-
tisphere an arena of microbial interactions and rapid evo-
lution (Rillig et al. 2024, Puglisi et al. 2019). The outcome
of these interactions is only now starting to unravel with
first evidence suggesting that plastics act as vectors of
human pathogens and ARGs (Zhu et al. 2022), while their
interactions with the other organic pollutants affect their
dissipation (Lamprou et al. 2025). Recent evidence sug-
gests that the co-occurrence of multiple stressors in soils
could magnify the negative effects on the soil microbiota
(Rillig et al. 2023), and that this aspect should be clearly
considered in future studies. Further evidence also high-
lights potential detrimental effects on soil fauna and their
associated gut microbiomes (Boughattas et al. 2024).
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Another barrier in, especially, microplastic
research is the fact that there are no standard-
ized methodologies for the detection, quantifi-
cation, and characterization of microplastics.
This barrier makes it very difficult to compare
different studies. Secondly, there is also a scar-
city of long-term data on the fate, degradation,
and potential accumulation of microplastics in
soil ecosystems, particularly concerning their
interactions with soil organisms and effects
on ecosystem services. Microplastic transport
through leaching represents another challenge.
Finally, a difficulty that is often overlooked is that
addressing the impact of microplastic pollution
in soils requires collaboration across disciplines.
This includes soil science, polymer chemistry
and toxicology. However, limited interdisciplin-
ary communication and data sharing can hamper
comprehensive research efforts.

Veterinary medicines such as antibiotics
and anthelmintics, end up in soil either direct-
ly through faeces deposition of grazing animals
(grasslands) or manuring of agricultural soils
(Fernandez et al. 2011, Fang et al. 2023). Navra-
tilova et al. 2021Udikovic-Kolic et al. 2014 Be-
sides that, the presence of antibiotics and an-
thelmintics in soils have been associated with
strong adverse effects on the soil microbiota and
particularly on AOM (Lagos et al. 2023, Lagos
and Karpouzas 2023) and AMF (Gkimprixi et al.
2023) with reciprocal effects on soil fertility and
plant productivity.

Despite extensive gaps remaining, metals
are among the pollutants for which already more
information is available regarding their effects
on biodiversity. For example, metals and metal-
loids can impact microbial communities in soil,
and impact different processes, such as carbon
storage and cycling (Azarbad et al. 2015, Vieira
et al. 2024). Faggioli et al. (2019), showed that
Pb contamination can decrease abundance and
richness of arbuscular mycorrhizal fungal com-
munities. Important is also that the use of fertil-
izers can introduce heavy metals and other soil
pollutants (Mantovi et al. 2003). Tézsér et al.
(2019) found that ground beetles can indicate
extreme soil metal pollution.

Excess nutrients have an important impact
on soil, water bodies, biodiversity and overall
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ecosystem functioning. Particularly nitrogen
and phosphorus can transport to surface wa-
ter bodies and groundwater, leading to eutro-
phication, loss of biodiversity, and oxygen-de-
pleted waters (Lundin and Nilsson 2021). E.qg.
mycorrhizal fungi, essential for many soil func-
tions and services, are negatively affected by
excessive nutrients (Origiazzi 2016). Excess
nitrogen also contributes to air pollution, with
deposition of nitrogen one of the main driver of
loss in plant biodiversity (Bobbink et al. 2010).
Moreover, excess nitrogen in soil can cause
increased emission of N,O, an important GHG.
(McDonald et al. 2021, Pan et al. 2022).

More than 70% of ecosystem area in the
EU is at risk of eutrophiciation due to excess ni-
trogen deposition (EEA 2024). In the EU+UK, a
worrying 74% of agricultural area receives ex-
cessive nitrogen inputs. Large areas also face
surpluses of phosphorus. The primary cause is
fertiliser and manure application, livestock den-
sity and soil degradation (erosion and leaching)
in agriculture (European Commission: European
Environment, Joint Research Center et al. 2024,
European Environment Agency 2018, European
Environment Agency 2019, Velthof et al. 2011).

This surplus of nitrogen in soil leads to an
acceleration of microbial nitrification that fur-
ther stimulates emissions of nitrous oxide, a
highly potent greenhouse gas (GHG), and con-
tamination of groundwater via nitrate leaching
(Kuypers et al. 2018). Also, phosphorus has ac-
cumulated in agricultural soils in Europe, after
the introduction of phosphorus-containing fer-
tilizers in addition to manure. Manure can also
be a source of antibiotics from veterinary med-
icines (Antikainen et al. 2008, Panagos et al.
2022b). Since the 1950s, the increased use of
fertilisers has increased crop production. In In-
dia total grain production in 1995 was reached
by 57 % more fertilizers than used in 1950 (Ma-
jumdar et al. 2016). However, their excessive
and inefficient use has led to nutrient excesses
and losses. The same has been experienced in
the EU (European Commission: European En-
vironment, Joint Research Center et al. 2024).
The negative long-term effects on soil, water,
biodiversity and human health have been ig-
nored for a long-time. It has been argued that
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excess use of nitrogen may even have a coun-
tereffect on yield due to its negative impact on
soil properties, soil life (Rodriguez-Eugenio et
al. 2018) resulting in lower income to farm.

Emerging contaminants and ‘forever-chemicals’

Specific knowledge gaps are related to the lack
of knowledge on the presence and therefore
also of the effects of emerging contaminants
on soil biodiversity and ecosystem services.
Also, PFAS or ‘forever-chemicals’ are important
soil pollutants, and characterized by specific
concerns, due to their highly persistent nature,
widespread use and toxicity at low concentra-
tions (Brunn 2023, European Commission: Eu-
ropean Environment, Joint Research Center et
al. 2024). Ultrashort-chain PFAS such as Tri-
fluoroacetic acid (TFA), irreversibly accumulat-
ing in different matrices across the EU, are de-
scribed by researchers as a global threat, due
to their important environmental and health
concerns (Arp et al. 2024).

Impact on Soil Ecosystems and Functions, and
Modelling

Soil pollution leads to impairments in ecosystem
structure and functions (carbon transformations,
nutrient cycling, maintenance of the structure
and regulation of biological populations). Mining,
agriculture, forestry and waste disposal jeopar-
dize the functional biodiversity compartment of
the ecosystem, which will also lead to destruc-
tion of the provision of goods and ecosystem
services (Morgado et al. 2018).

Although some studies have carried out
economical assessments of e.g. the impact
of agriculture on the environment (Kurth et al.
2019), the environmental externalities of soil
pollution have not been fully assessed across
Europe. Likewise, benefits of decreasing soil
pollution and positive impacts of restoring soil
health on biodiversity and ecosystem services,
including long-term, sustainable production of
food, have not been comprehensively included
in current evaluation assessments, including in
existing models. For example, models assess-
ing the impact of reducing pesticides often
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do not consider the medium- and long-term
positive impacts regarding crop production
which would result from soil restoration and
enhancement of ecosystem services, such as
increased pollination, natural pest control and
protection against erosion.

The impact of soil pollution reaches far be-
yond soil ecosystems. The interlinkages of soil
pollution with air and water pollution on the one
hand, and the impact of soil pollution on wider
ecosystems, beyond soils on the other hand,
are also among the 10 identified priority knowl-
edge gaps, which are further discussed.

Actions

o Ambitiously enhance systematic monitoring
of soil pollution, to fill in the extensive gaps
on presence of pollutants in sails,

e Include in environmental risk-assessment
long-term, low-level, chronic, cocktail/ mix-
tures and cumulative/synergistic effects,
feedback monitoring results in the authori-
sation of chemicals, as well as the indirect
impacts, and impacts on landscape-level
and ecosystem functioning/services, to in-
tegratively assess the impact on soil biodi-
versity and ecosystem services,

e Include all relevant studies in risk assess-
ment, and ensure transparency,

e Research/action on prevention and reme-
diation of soil pollution, e.g. transitioning to
ecological farming methods and investing in
nature-based solutions,

e Include impact of soil pollution on ecosys-
tem functioning/services in modelling to
support policy making decisions.

e Enhanced research on individual substanc-
es (presence and interactions in soil, trans-
port and fate, mobility and persistence, ec-
otoxicological properties, bioaccumulation
and bioavailability, exposure of and risk to
the environment).

Bottlenecks
e The high complexity of soil and interactions
of soil compounds, organisms and contam-

inants hinders the assessment of the full
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impact of soil pollution on the delivery of
ecosystem services.

e Lack of systemized monitoring, and limited
capacity leads to data gaps which hinder
the determination of the level and spatial
extent of pollutants in EU soils, both for
point-source and diffuse pollution.

» Various and varying attitudes and, percep-
tions of actors involved in soil pollution hin-
der directing and attributing needed means
and efforts to the identification and the as-
sessment of the impact of soil pollutants
and the extent of soil pollution.

3.1.2. Socio-economic and market
tools to prevent soil pollution and
their fithess-for-purpose

Summary of the Knowledge Gap (Knowledge
Gap 2)

While the relationship between prevention of soil
pollution and socioeconomic issues is two-fold,
there is lack of a comprehensive framework and
corresponding tools to tackle it. There is a need
for developing tools that are capable of address-
ing and reflecting both sides of the coin and can
simultaneously take into account their specific
socioeconomic issues, and conflicting nature.
There is no framework that addresses, on the
one hand, the question of which socioeconomic
changes and market tools can prevent soil pol-
lution, and, on the other hand, how prevention of
soil pollution changes those socioeconomic is-
sues, while considering temporal and spatial con-
text. In the first case, the focus is on the pollut-
er and the polluting activity. In the second case,
those who are exposed to soil pollution and its
consequences are the focal point. In both cases,
it is essential to have a clear understanding of the
relationship between the socioeconomic status
of the population and the impact of sail pollution/
prevention on that status. There is a need for an
analytical framework for the review of the under-
pinning factors of the negative impacts of pollu-
tion and prevention, addressing what levers can
be activated for turning around those impacts,
what kind of new tools have to be developed, and
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how existing tools could be applied and/or adapt-
ed to reach the EU’s goals related to soil health.

State of the Art

Socio-economic and market tools reflect the
European social and economic model. As stated
in the report of the working group “social and
economic model”, the European model is depict-
ed by principles (solidarity and cohesion) and
common values (freedom, equality, social jus-
tice, dialogue, respect for human rights based
on equality among member states) that deter-
mine the model’s characteristics and lay down
the bases for sustainable development. While
the European economy is a market economy,
the principles of the model require that “eco-
nomic growth must serve to boost overall social
wellbeing, and not take place at the expense of
any section of society, especially young peo-
ple” (EC working group 2007). The adjective
“socioeconomic” used in various terms describ-
ing status, development, growth etc. is always
a reflection of the European model and should
be interpreted in that context.

A large number of scientific papers ex-
ist acknowledging, describing and elaborating
on the negative impacts of soil pollution on soil
health, soils functions/ecosystem services and
human health and addressing socio-economic
impacts, and market tools, market failures and
the need to change the regulatory framework.
They are reflected in policy papers and reports
(FAO 2015, FAO 2018, FAO 2020, FAO 2024b,
UNEP and FAO 2021, UNEP et al. 2013, Euro-
pean Environment Agency et al. 2024, Europe-
an Environment Agency 2019, European Envi-
ronment Agency 2018, EEA 2022a, EEA 2022b,
EEA 2023a, EEA 2019) OECD publications could
become guidelines in assessing and developing
tools and in evaluating their fithess-for-purpose
(OECD 2008, OECD 2012, OECD 2020, OECD
2021, OECD 2023a, OECD 2023b, OECD 2024).

The structure and the logic of those papers
can fit into the DPSIR model widely used by the
EEA for analysing environmental issues (Stan-
ners et al. 2007). Many of them assess the state
of soil (S), identify pressures (P), and impact (1)
and look for drivers (D), before calling for policy
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changes (Response - R). Based on this mod-
el, a complex response needs to be developed
addressing all elements of the DPSIR model in
order to mitigate or cease pressures resulting in
a decreased or even zero negative impact.

As part of the SOLO project, drivers rele-
vant to soil mission objectives were summarized.
(Chowdhury et al. 2024) In the study, six cate-
gories of drivers were identified: 1. technology
and management, 2. demography, 3. policy and
institutional arrangements, 4. economy, 5. nature
and environment, 6. socio-cultural context re-
garding four land uses (nature, urban, agriculture,
forest). For all categories, the relevance of the
drivers was assessed, identifying whether they
are relevant everywhere, within the EU, or within
a specific region or member state. Out of the 451
studies, 82 were related to soil pollution (agricul-
ture 52, nature 16, urban 11, forest 3). There are
significant differences in the data on soil pollution
drivers for the different land use categories, the
ranking corresponding to the number of studies.
The site specificity of soil health and soil pollu-
tion issues could be underestimated since more
than half of the agriculture and nature drivers’
relevance was indicated at member state level
only. Another review study on drivers identified
four main groups related to human activities (1.
industry and mining, 2. urban areas and trans-
port, 3. agriculture, 4. hazards and military activ-
ities) as the main sources of pollution. It pointed
out, that the reviewed studies adhered differ-
ent importance to pollutants based on land use
(Vieira et al. 2024). In 2002 the EC published a
Communication (European Commission 2002) on
the impact assessment to improve policy quality
and coherence by simultaneously giving consid-
eration to economic, social and environmental
issues. The EC gave examples of impacts which
should be reviewed during the impact assess-
ment process. The economic impacts included
macro- and micro-economic impacts relevant to
economic growth, competitiveness, compliance
costs (including implementation costs for public
authorities), innovation and technological devel-
opment, investments, market shares, trends in
consumer prices. Social impact examples referred
to various human rights, employment, health and
safety issues, consumer rights, social capital, se-
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curity, education, training and culture and their
distributional effects on income at different levels
(sector, groups, workers, consumers). Examples
of environmental impacts linked the negative and
positive impacts to changes in the status of the
environment manifested in climate change, air,
water and soil pollution, land-use change, biodi-
versity loss, and decrease in public health (Euro-
pean Commission 2002).

The need to assess and evaluate socioeco-
nomic factors and impacts of projects, and to
foster socioeconomic development, have been
key issues for decades. In 2002, the socioeco-
nomic tools for sustainability impact assessment
were summarized (Tamborra 2002). The Sum-
mary'’s aim was to provide tools for assessing the
economic, social and environmental impacts of
a regulatory approach in order to promote sus-
tainable development. The main two objectives
were the integration of economic and ecological
dimensions by developing integrated models and
finding ways to show the value of health and en-
vironmental damage in monetary terms, thus as-
sessing those external costs of human activities.
Socio-economic survey tools (Liswanti et al. 2012)
could become important source of information on
the socio-economic status of stakeholders and
their interest in prevention of soil pollution and re-
mediation. The integration of the various aspects
is challenging especially regarding agriculture,
where the diversity of the natural, environmen-
tal, historical, social, cultural, economic factors
among the member states is significant (Andre-
jovskd and Glova 2022). While Darnhofer et al.
(2010) argue that resilience thinking can integrate
ecological, economic and social aspects into
farming systems, DAdamo et al. (2020) empha-
sise the challenges in taking all three into consid-
eration when developing the new socio-economic
indicator for bioeconomy sectors. They underline
that the lack of relevant environmental data was
the reason why the environmental aspects could
only be integrated in the future. It would be im-
portant to review whether the new socioeconom-
ic indicator could be used and further developed
to tackle the issues regarding prevention of soil
pollution and/or remedation.

The need to assess the socioeconomic
impact has been part of the earlier and recent
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Horizon project calls, and evaluation (EC DG R&l
2017, European Commission 2018). The calls re-
fer to different socioeconomic aspects, howev-
er, they do not necessarily specify which factors,
nor which status, to consider.

In 2018 the EC published a document (Euro-
pean Commission 2018) to help the assessment
of socio-economic and environmental impacts
of Europe’s R&D program. The guide refers to
the use of the Nemesis model (EC JRC 2020).
The Nemesis model (a macro-sectoral model
with a recursive dynamics) is a decision support
tool, helping to make a choice between different
policies taking into consideration management,
budget and design issues. (European Commis-
sion 2018, Akcigit et al. 2022).

The European Commission regularly re-
views the implementation, the results and the
impacts of the Common Agricultural Policy by
applying the common monitoring and evaluation
framework (CMEF) (EC DG for Agriculture and
Rural Development 2015, European Commission
DG Rural Development 2017). CMEF provides in-
dicators (output, result, impact, context indica-
tors) evaluating the implementation against the
set objectives of the programme.

In 2023 FAO introduced the concept of true
cost accounting (TCA) (FAO 2023). By defini-
tion TCA is “A holistic and systemic approach
to measuring and valuing the environmental,
social, health and economic costs and benefits
generated by agrifood systems to facilitate im-
proved decisions by policymakers, businesses,
farmers, investors and consumers.” TCA helps
to uncover hidden costs along the agrifood
system and provides a guide for transforma-
tion. Hidden cost is defined as “Any cost to in-
dividuals or society that is not reflected in the
market price of a product or service. It refers to
external costs (that is, a negative externality)
or economic losses triggered by other market,
institutional or policy failures.” However, hidden
costs do not cover all costs relevant to soil pol-
lution and remediation. While costs associated
with pollution (as one of the land degradations),
or pesticide exposure was omitted, costs of
land-use change and nitrogen emissions were
included. In that respect it is important to note
that on the one hand, both control of nitrogen
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emission and land-use changes are part of the
pollution prevention tools. On the other hand,
the omission of the costs was justified not by
the inadequacy of the assessment, but rather
by data gaps (lack of global datasets, models
for estimating cross-country hidden costs), or
by intangible values that cannot be monetized.
In 2024, consideration was given to improve the
assessment of TCA by integrating the pollution
costs of pesticide use into the hidden costs
(Lord 2024, FAO 2024a).

The above means that if the limitation of
data gaps is overcome the TCA assessment
could become a valuable method for identify-
ing hidden socioeconomic costs caused by soil
pollution (land degradation) not only in relation
to the agrifood system but to other sectors as
well. During the TCA assessment process the
following levers are reviewed: trade and mar-
ket interventions, (de)coupled subsidies, gen-
eral services support, laws and regulations
behavioural policies, private capital, voluntary
standards. All of them are relevant from the
point of pollution and its prevention.

FAO has reviewed the hidden costs in 154
countries. Data for all EU member states (except
Cyprus, Luxemburg and Malta) are published in
the report. It underlines the diversity of member
states, and how TCA assessment made at na-
tional level allows country specific conditions (soll
health relevant, economic, social, cultural con-
ditions, availability of data) to be taken into ac-
count. That is crucial for policy design at national
and EU level, as implied often in scientific papers.

Pollution prevention requires transforma-
tion of all sources and causes (human activities,
market, institutional and policy failures) leading
to pollution. Prevention transforms the socio-
economic status of the beneficiaries associated
with pollution and the negatively affected stake-
holders depending on the principles used (pol-
luter pays or beneficiary pays principle in con-
text with fairness and distributional justice), the
method of prevention, for example pesticides
substituted by weeding robots, changing land
management, soft or hard regulation (Banerjee
et al. 2021, Congiu and Moscati 2022), to name
but a few. There are several studies analysing
these complex issues (Rickert 2004).
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Actions

e Research addressing the intertwined nature
of stakeholders’ relationships to soil pol-
lution impacts and policies and the effect
of country specific cultural and historical
backgrounds relevant to institutional, mar-
ket, or policy setups and failures in the con-
text of pollution prevention and the need for
behavioural change,

o Comprehensive, consistent and compara-
tive research of the existing tools on so-
cioeconomic issues, how both sides are
affected by prevention, and how to fill
data gaps,

e Further development and improvement of
the tools,

o Testing the tools including the test of the
TCA assessment in member states with
contrasting levels of data to see how it per-
forms under different circumstances,

e Making the socioeconomic impact of soil
pollution and its prevention on the benefi-
ciaries and on the negatively affected more
transparent and to highlight trade-offs,

» Data collection on the socio-economic sta-
tus of the exposed and the polluters, and
the impact of the preventive measures on
those statuses.

Bottlenecks

e Limited acknowledgement and understand-
ing of the intertwined nature of stakehold-
ers’ (polluters and exposed to pollution)
relationships to soil pollution impacts and
policies hinder further development and im-
provement of the tools, and the identifica-
tion of trade-offs.

e Lack of cultural context hinders con-
sistent data collection and comparison
of data, and to develop adequate tools
for addressing socioeconomic issues
stemming from soil pollution prevention
and remediations.

e Sector-specific approaches hinder the de-
velopment of an overarching, comprehen-
sive and consistent framework for soil pol-
lution prevention and remediation.
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3.1.3. Impact of soil pollutants
(individual and mixtures, short-term
and long- term) on human Health

Summary of the Knowledge Gap (Knowledge
Gap 3)

Available research clearly shows that soil pollu-
tion poses severe risks to human health. People
are throughout their life exposed to soil pollut-
ants through different routes. The measure of all
the exposures throughout a lifetime is referred
to as “the exposome”. Drinking water and food
contamination, transport of pollutants via dust
to places frequented by people (paths, play-
grounds, houses, gardens,), ingestion/inhalation
of soil particles and dermal exposure are import-
ant exposure pathways through which soil pol-
lution can impact human health. Analogous to
the research gaps regarding the assessment of
the impact of pesticides on the environment, the
complete impact of total soil pollution exposure
through all exposure routes, taking into account
mixture and cumulative effects, chronic low-level
exposure, throughout a lifetime (the ‘exposome’),
on human health remains currently unclear. For
example, current risk assessment focuses most-
ly on e.g. pesticide exposure through food inges-
tion, while experts point out that exposure via air
and skin are important routes of exposure, which
are currently not adequately assessed.

State of the Art

A variety of studies have shown the impact of
soil pollution on human health. Drinking water
and food contamination, transport of pollutants
via dust to places frequented by people (paths,
playgrounds, houses, gardens, etc...), ingestion/
inhalation of soil particles and dermal exposure
(Marin Villegas et al. 2019, Chaparro Leal et al.
2018, Govarts et al. 2023) are important expo-
sure pathways through which soil pollution can
impact human health. Among the chemicals or
groups of chemicals of major public health con-
cern identified by the WHO are Cd, Pb, Hg, dioxin
and dioxin-like substances and highly hazardous
pesticides, of which residues are transported
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from polluted soils to food and water bodies. Also
pathogens present in soil may contaminate food,
with human health risks (e.g. diarrhea, cancers).
Health aspects related to soil pollution vary ac-
cording to land use (e.g. urban soils are char-
acterised by specific problems and challenges,
given the concentration of anthropogenic activi-
ties concentrated there, and the high population
density). Minzel et al. (2024) underline the links
between soil and water pollution, and cardiovas-
cular disease. Robust evidence has shown the
links between multiple pollutants, such as pes-
ticides, heavy metals, dioxins and toxic synthet-
ic chemicals to increased risk of cardiovascular
disease, while some data also suggest an asso-
ciation between micro- and nanoplasic particles
and cariodvascular disease. The authors point
out that soil pollution diminishes soil's capacity
to produce food, causing crop impurities, malnu-
trition and disease.

People living in areas with a higher concen-
tration of metals and metalloids in soil are linked to
the aetiology of some forms of cancer, increased
incidence of mental disorder and all-cause car-
diovascular diseases mortality (Vieira et al.
2024, European Commission: European Environ-
ment, Joint Research Center et al. 2024, Nufez et
al. 2017, Ayuso-Alvarez et al. 2019, Ayuso-Alvarez
et al. 2022). Higher rates of lung cancer mortality
was found in regions with higher concentrations
of cadmium or arsenic (Bartnicka et al. 2023). For
some locations, this was supported by increased
regional mortality rates caused by cancer types
associated with these pollutants (Parviainen et al.
2022). An identified knowledge gap underlined in
European Commission: European Environment,
Joint Research Center et al. (2024) is that most
of the identified studies use the total amount of a
given pollutant in soil, rather than considering the
bioavailable fraction (Hemphill et al. 1991, Zhao
et al. 2020). The uptake of metals by plants may
pose significant risks to human health.

Research projects show widespread pes-
ticide contamination in soils, air, waterways, in-
door dust, animals and humans. However, sys-
tematic monitoring data of pesticide residues are
not available. A large body of research shows the
links between pesticide exposure and a variety
of health impacts. Pesticide exposure has been
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linked to various types of cancers (non hodgkin
lymphoma, multiple myeloma, prostate cancer,
leukemia, breast cancer, kidney and bladder
cancer, soft tissue sarcomas, hodgkin’s disease,
testis cancer, melanoma), respiratory diseases
(e.g. asthma), neurodegenerative diseases (Par-
kinson’s disease, Alzheimer’s disease), anxiety/
depression, thyroid diseases, developmental
delays in children and cognitive imparements,
cardiovascular diseases, infertility of birth mal-
formations, weakening of immune system and
negative impacts on the gut microbiome (Bret-
veld et al. 2006, Inserm 2021, Nicolopoulou-Sta-
mati et al. 2016, Abou Diwan et al. 2023, Farr
et al. 2004, Figueiredo et al. 2021, Gama et al.
2022, Doganlar et al. 2018, Panzacchi 2025).
Certain illnesses, such as types of cancer (in
France) and Parkinson’s disease (In France, Italy
and Germany), have been listed as occupation-
al diseases, due to their high prevalence among
farmers and farmworkers (Shan et al. 2023, Blo-
em and Boonstra 2023, Adhikari and Hartemink
2016, Inserm 2021). Silva et al. (2023) found that
64%, 66% and 76% of pesticide residues found
in, respectively, crops, indoor dust and air sam-
ples, are linked to adverse human health effects.
They found 43% and over 49% of residues in in-
door dust and air samples have been linked to
highly severe effects (e.g. carcinogenicity, neu-
rotoxicity, endocrine disruption, reproductive/
development effects). Similarly to the shortcom-
ings in pesticide risk assessment for the envi-
ronment, pesticide risk assessment for human
health is characterised by extensive shortcom-
ings. Mostly only uptake of pesticides through
food is monitored, while exposure routes such as
inhalation and uptake through the skin are not,
or not well assessed. The uptake through food is
underestimating real risks to consumers by not
accounting for mixtures. In addition, Hernandez
et al. (2013)highlighted that the synergistic and
mixture effects of pesticides, and the long-term
exposure of (low-level) concentrations, are not
taken into account in current risk assessment.
Co-formulants, which are added to pesticide
products, are not assessed. Moreover, differ-
ent health impacts such as neurological impacts
and endocrine disrupting impacts are not ade-
quately, or not, assessed (Bloem and Boonstra
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2023). Comprehensive assessments, covering
toxicity effects of pesticide mixtures and cumu-
lative effects, long-term low-level exposure, in-
direct effects, and spatial analysis of long-term
pesticide exposure and prevalence of specific
health impacts in Europe are needed to assess
these impacts further.

Excessive nutrients in soils are linked to im-
portant human health risks. For example, nitrogen
emission contributes to the development of aero-
sol and particulate matter air pollutants, impacting
human health (European Commission: European
Environment, Joint Research Center et al. 2024,
Pozzer et al. 2017). Also indirectly, excess nutri-
ents in soil affect human health, through compro-
mising drinking water (Lundin and Nilsson 2021).

It is well documented that the soil deposi-
tion of veterinary medicines such as antibiotics
and anthelmintics could raises health concerns
associated with their plant uptake and trans-
location to edible plant parts entering the food
chain (Navratilova et al. 2021), and the environ-
mental dispersal of antibiotic resistance genes
(Udikovic-Kolic et al. 2014).

Analogous to the impacts on biodiversity
and ecosystems, the impacts of soil pollution on
human health reach far beyond polluted soils.
The widespread drift of soil pollution leads to pol-
lution of water resources (groundwater, drinking
water, surface water, the marine environment),
to air and indoors (e.g. in houses, schools). Soil
pollution leads to the degradation of ecosystem
services, with far-reaching impacts on human
health. For example, by negatively impacting
soil invertebrates and soil microbial communi-
ties, pesticide and metal pollution impact car-
bon cycling and storage (Gunstone et al. 2021,
Azarbad et al. 2015, Faggioli et al. 2019). Micro-
and nanoplastics also have negative effects on
soil properties, with their degradation leading to
the release of other contaminants, which can af-
fect soil organisms and plant growth, and accu-
mulate in the food chain (European Commission:
European Environment, Joint Research Center et
al. 2024). The impact of soil pollution on human
health is therefore multi-faceted, as soil pollution
not only poses direct health risk due to e.g. der-
mal absorption, ingestion and inhalation, but also
undermines food- and water quality and ecosys-
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tem services, holding important risks for food
security (Morgado et al. 2018, European Com-
mission: European Environment, Joint Research
Center et al. 2024).

Persistent organic pollutants in soils impact
human health (van den Berg et al. 2017). Also,
uptake of PAHs through contaminated food is
associated with a suspected carcinogenic risk.

Concluding, available research clearly
shows that soil pollution poses severe risks to
human health. People are throughout their life
exposed to soil pollutants and other pollutants
through different routes. The measure of all the
exposures throughout a lifetime is referred to as
“the exposome”. Dr. Christopher Wild defined
the exposome in 2005 as “every exposure to
which an individual is subjected from concep-
tion to death” (Westmark 2023). The exposome
can be highly variable and evolves throughout
the lifespan. Understanding how the exposure
to different environmental pollutants throughout
a lifetime, including soil pollution, impact human
health, is key and represents a major knowledge
gap. Drinking water and food contamination,
transport of pollutants via dust to places fre-
quented by people (paths, playgrounds, houses,
gardens,), ingestion/inhalation of soil particles
and dermal exposure are important exposure
pathways through which soil pollution can im-
pact human health. Analogous to the research
gaps regarding the assessment of the impact
of pesticides on the environment, the complete
impact of total soil pollution exposure through
all exposure routes, taking into account mixture
and cumulative effects, chronic low-level expo-
sure, throughout a lifetime (the ‘exposome’), on
human health remains currently unclear. For ex-
ample, current risk assessment focuses mostly
on e.g. pesticide exposure through food inges-
tion, while experts point out that exposure via air
and skin are important routes of exposure, which
are currently not adequately assessed.

Actions
* Ambitiously enhance systematic monitoring
of soil pollution, to fill in the extensive gaps
on presence of pollutants in soils affecting

human health,
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e Include in human health risk-assessment
long-term, low-level, chronic, cocktail/ mix-
tures and cumulative/synergistic effects (ex-
posure to multicontaminants), as well as the
indirect impacts though the impacts on e.g.
ecosystem functioning/ services, to integra-
tively assess the impact on human health.
Include the ‘Exposome’ in risk assessment,

e Include all relevant studies in risk assess-
ment, and ensure transparency,

o Research/action on prevention and reme-
diation of soil pollution, e.g. transitioning to
ecological farming methods and investing in
nature-based solutions,

e Include impact of soil pollution on human
health, on ecosystem services, in modelling
to support policy making decisions,

o Data collection and analysis of individual sub-
stances on human health (exposure routes,
toxicological properties, the exposome).

Bottlenecks

e The high complexity of soil pollutant mix-
tures and (indirect) effects on human health
hinders systematic monitoring and health-
risk assessment,

e Lack of systemized monitoring, and limited
capacity leads to data gaps which hinder
the determination of the level and spatial
extent of pollutants in EU soils, both for
point-source and diffuse pollution affecting
human health,

e The various and varying attitudes and per-
ceptions of actors involved in soil pollution
hinder the directing and attributing needed
means and efforts to the assessment of the
impact of soil pollution on human health and
the development and application of preven-
tive measures and remediation practices.

3.2. Other prioritized
Knowledge Gaps

This sections describes the other 7 prioritized
knowledge gaps, which were identified as part
of the 10 priority knowledge gaps, next to the 3
key knowledge gaps described above.
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3.2.1. (Knowledge gap 4) - Data
gaps on soil pollution and lack of
systemized monitoring

Summary of the Knowledge Gap

Despite the extensive knowledge on pollutants
and their impacts, a clear lack of data on soil pol-
lution still exists. It is linked to a lack of data on
soil pollution and systemized monitoring frame-
works, which are needed to assess the scope
and possible impacts of soil pollution, and to de-
velop management and policy tools.

State of the Art

There are several ways to gather data, includ-
ing monitoring systems. There are high- reso-
lution on targeted areas (e.g. industrial areas),
and low-resolution of general purpose monitor-
ing schemes. While general monitoring schemes
like EU's LUCAS and GEMAS have contributed
to soil pollution data, specifically on metals and
pesticides, the full extent of most soil pollutants
remains unknown. This includes newly emerg-
ing contaminants, and their possible (future)
impact on soil functioning. Data and monitoring
of key groups of soil pollutants (e.g. pesticides,
pharmaceuticals, biocides, metals, PCBs, PAHSs,
TPHSs, PFAS, micro- and nano plastics, pollutants
in sewage sludge and relevant metabolites/by-
products) is key to assess soil pollution levels
and risks, and monitor management strategies
to achieve healthy soils. For many substances,
there is a lack of widely accepted determination/
quantification methods in soils and soil organ-
isms. Challenges include associated risks, com-
parability and error determination.

There is much diversity and complexity in the
monitoring of different pollutants. Micro- and na-
no-plastics, as well as many emerging pollutants,
are challenging to monitor. Although prioritization
approaches and practical feasibility are prerequi-
sites for effective gathering of data and monitor-
ing, it is overall essential to monitor as many soil
components/contaminants as possible. Materials
that are currently not considered pollutants, could
pose extensive problems in the future.

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

Past experience has shown a long delay
between substances ending up in soils, and the
realisation of their negative impacts, resulting in
far-reaching, long-term challenges for ecosys-
tems, their services and human health. Current-
ly, there is a lack of understanding of the scope
of contaminants/pollutants, including newly
emerging contaminants, and their possible (fu-
ture) impact on soil functioning. Large data gaps
exist regarding the presence of emerging pol-
lutants (e.g. pharmaceuticals, endocrine disrup-
tors, hormones, micropollutants (e.g. microplas-
tics) in soils, their behaviour in the environment
and their toxicity, transport and bioaccumulation
properties in humans. Available research shows
that emerging pollutants can raise pollutants of
concern, involving high risks for the environ-
ment and human health (Vieira et al. 2024, Ro-
driguez-Eugenio et al. 2018, Covaci et al. 2011).
Enhancing and implementing methodologies to
measure and predict the presence and impact of
newly emerging contaminants are needed.

Data gap issuses are relevant to all types of
land uses. Urban soil pollution has been docu-
mented through several cases, but has been over-
all poorly studied. Urban soil pollution is associat-
ed with specific challenges related to among other
issues, human health (Guillén et al. 2022), water
quality (e.g. groundwater pollution OECD 2023b)
and risks for pollution of surrounding regions (Liu
et al. 2023). Insights in the full impact of urban soil
pollution are lacking, as well as clear frameworks
and initiatives to tackle urban soil pollution.

Actions

e Review and comparative analysis of EU and
national data on soil pollutions (existing and
emerging pollutants),

e Review of methodologies, and monitoring
systems aimed at identifying site speci-
ficities (abiotic and biotic conditions), and
shedding light on member state’s priorities,
economic, institutional, and regulatory con-
straints/ limitations,

e Development of a monitoring framework and
harmonisation of member states methodol-
ogies without affecting member states’ in-
terest and priorities by the standardization,
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o Establishment of an open access database
with risk relevance on emerging pollutants
to promote well-informed decision-making.

Bottleneck

e Lack of standardised monitoring frame-
works and methodologies for measuring
pollutants hinders comparative analysis at
EU level, the establishment and operation of
consistent databases, robust risk assess-
ment and well-informed decision-making.

¢ High costs and institutional barriers hinder
development of monitoring frameworks,
harmonisation and comparative analysis.

3.2.2. (Knowledge Gap 5) -
Technical/practical tools to
remediate soil pollution and
restore soils

Summary of the Knowledge Gap

There is need for further development of remedi-
ation and restoration techniques, and for further
knowledge on how traditional and alternative tools
can be effectively and efficiently combined to
meet set soil health targets for current and future
potential land use. An important aspect is that leg-
islation does not take into account all soil pollution
and associated risks, leading to a lack of focus on
remediation techniques which focus on tackling
pollutant mixtures and emerging pollutants and on
restoration. In practice, laboratory analytical pro-
grams often provide analysis only for those pollut-
ants listed in the legislation. In this regard, there is
a lack of a readily available open access database
on new/state-of-the-art techniques/protocols,
and new emerging pollutants, in order to support
everyday decision-making on remediation.

State of the Art

Chemicals or mixtures of chemicals released into
the environment - including soil pollutants - pose
an actual risk to soil functions and also to ecological

and human receptors. Currently, technical/
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practical tools have been developed in the light of
risk- based land management strategies and the
corresponding risk-based soil screening values
(risk-based SSV) reflecting on the potential func-
tion and future use of the land after remediation
(EEA 2023a). There has been a significant shift in
remediation technologies and removal of pollut-
ants from soil. Traditional remediation practices
(physicochemical technologies) are substituted or
combined with alternative techniques (Phang et al.
2024), such as addressing management practic-
es, crop use and the use of microbial technologies.
However, there is a need for further research and
development to improve remediation effective-
ness. Methods include phytoremediation, phyto-
extraction, phytostabiliziation, phytovolatization,
phytodegradation (Sharma et al. 2023) phytoman-
agement (Evangelou et al. 2015), bioremediation
(Sales da Silva et al. 2020, Jiang et al. 2022) and
vermiremediation (Xiao et al. 2022).

Specific challenges are associated with
soils contaminated with multiple pollutants. The
interaction between organic and inorganic pol-
lutants can change bioavailabity and solubility
of pollutants and their biotoxicity and biological
metabolic processes. (Vieira et al. 2024). For
pollutants that are relatively new to the environ-
ment, such as PFAS, important challenges re-
main due to unknown pathways of degradation.
Also, competition or joint adsorption on binding
sites poses a challenge. For mixed contaminat-
ed soils, successful combinations of physico-
chemical and biological remediation techniques
have been discussed, and the positive synergis-
tic impact underlined, however, more research
is needed (Aparicio et al. 2022, Lacalle et al.
2020). Microbial technologies carry great po-
tential, however, still need further development
regarding increasing efficiency. The process is
highly time consuming, which is considered a
significant bottleneck in the field of bioremedia-
tion. More research is needed on the potential of
nature-based solutions and the use of microor-
ganisms for bioremediation processes.

As stakeholders highlighted, the daily prac-
tice in the investigation and assessment of impacts
uses a set of tools to evaluate the actual risks
posed by contaminants or combinations of chem-
icals. These tools include different threshold- limit
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values for organic and inorganic chemicals, and
also numerical models for qualitative risk assess-
ment processes in order to evaluate the actual
risks of the impacts. The practical application of
this evaluation and assessment framework needs
clear and sound scientific background as a basis
for the evaluation and assessment of the rate and
risk of the impacts. In practice, the list of recog-
nized contaminants is amended regularly with
compounds that were not recognized as priority
pollutants or were not focused on before such the
PFAS-PFOS compounds. Typically, laboratory an-
alytical programs of environmental assessments
(both for soil or for groundwater) include those
compounds that are listed in the relevant legisla-
tion. In this way, it may easily happen that samples
contain chemicals which are of potential concern
remain under the radar, if those chemicals are not
yet taken up in legislations. This may lead to wrong
conclusions when evaluating the results.

A similar example is soil gas as an environ-
mental indicator or element. Many organic com-
pounds, once released into the soil, tend to evap-
orate into the soil gas above the groundwater
level - in the so-called unsaturated zone. These
vapours may affect the multifunctional proper-
ties of the top fertile layers of the soil and may
also pose a human health risk if migrating into
confined spaces like cellars or houses. In many
cases this type of risk is leading to the need of
an engineering intervention. Yet, soil gas is not
even mentioned in many countries in the rele-
vant legislation, as a factor to be monitored or
considered. In general, more research is needed
to improve efficiency, feasibility, costs and time
efficiency of remediation techniques for a vari-
ety of different contaminants and soil conditions.

Actions

o Research on the effect of mixtures and
emerging pollutants,

e Research on the further development of re-
mediation techniques

e Research on how to improve efficiency
and effectiveness of alternative, nature-
based techniques, including the review of
how traditional and alternative methods
could be combined,
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e Review and comparative analysis of eco-
nomic, institutional and policy framework of
remediations and the technical solutions,

e Development and introduction of a coordi-
nated mechanism and a task on national and
EU level to establish and maintain an open
access database with a regular update of
scientific research to support the everyday
decisions on remediation,

e Review of the laboratory protocols and de-
velop a procedure on how to update them
for emerging pollutants.

Bottleneck

o Nature-based solutions are often time-con-
suming which hinders their further de-
velopment and application, as well as the
development and uptake of nature- based
solutions in combination with traditional
methods and techniques.

e Limited market interest for alternative re-
mediations solutions hinders research and
development of alternative methods.

o Outdated laboratory practices hinder the
adoption of new techniques and the as-
sessment of the effect of pollutant mixtures
and emerging pollutants.

3.2.3. (Knowledge Gap 6) -
Behaviour/transportation and fate
of soil pollutants and link of soil
pollution with water and air

Summary of the Knowledge Gap

Soil pollution contributes to water and air pol-
lution, and pollutants transported by air and
water can cause soil pollution, particularly dif-
fuse pollution. Extensive knowledge gaps ex-
ist concerning the partitioning of pollutants in
different physical phases, and the behaviour,
transportation and fate of many soil pollutants
in soil, water and air. These three compart-
ments hence need to be adequately assessed
to evaluate (the impact of) diffuse soil pollution,
demanding complex analysis.
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State of the Art

Soil pollution is a major cause of groundwa-
ter and surface water contamination. Identified
pathways from farm lands include: erosion and
water body siltation, runoff contaminated with
fresh manure, fertilizers or pesticides, and saline
irrigation drainage water affecting downstream
ecology, nitrogen and phosphorus overuse
(Drechsel et al. 2023).

In urban areas, solid municipal waste dumps
poseathreattogroundwaterwithasignificantneg-
ative effect on the socioeconomic status of peo-
ple residing nearby the dumpsites (Parameswari
et al. 2012). NOx soil emissions can have import-
ant impacts on air quality (European Commission:
European Environment, Joint Research Center et
al. 2024). Local pollution (e.g. contaminated sites)
is, via transportation processes, also often linked
to diffuse pollution. The analysis of contaminated
soil samples of 112 ecosystems across the globe
(including Antarctica), comparing the contamina-
tion level between urban greenspaces and near-
by natural sites, proved the transportation of soil
pollutants, and its global effect (Liu et al. 2023).
At the same time, pollutants found in water bodies
and in the air can be transported to soils, through
precipitation or deposition processes. The inter-
linkages of the different matrices entail important
consequences for management of pollution. For
example, when groundwater is contaminated, the
costs and complexity of bioremediation of soils
are also greatly increased. In addition, insufficient
knowledge of bioaccumulation and bioavailability
of soil pollutants limits our understanding of as-
sociated risks. Accumulation of contaminants in
one soil organism (e.g. earthworm) can be trans-
ferred through the soil foodweb to other trophic
levels and reach aboveground organisms (e.g.
birds) (FAO and UNEP 2021). The soil polluting
human activity (the pollutant used, the timing and
the conditions of the application of the pollutant)
has an impact on the behaviour, transport and
fate of soil pollutants, through its effects on soil
functions, and influenced by the abiotic and biotic
conditions of the specific site.

Processes of transportation (e.g. wind ero-
sion) and air-water-soil interactions are highly
dependent on soil characteristics and climatic
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conditions. This knowledge is essential for pre-
venting pollution. The integration of such knowl-
edge into decision support systems is crucial
for actual prevention of water and air pollution.
An example of such a tool is the ‘pesticide fate
tool’ developed during the LandSupport project
for the assessment of groundwater vulnerabili-
ty to specific pesticides, and to guide decision
makers in making the right choice in respect of
site specificity (Bancheri et al. 2022). This un-
derlines, that site-specific evaluations are need-
ed. The EC’s monitoring report of 2022 on the
“zero pollution” ambition (European Commission
2022a) and the the Reports of the European
Court of Auditors (European Court of Auditors
2020a, European Court of Auditors 2020b) un-
derline the need to address the influence of hu-
man activities on soil pollutants.

Extensive knowledge gaps still exist con-
cerning the partitioning of pollutants in different
physical phases, and the behaviour, transporta-
tion and fate of many soil pollutants in soil, water
and air. These three compartments hence need
to be adequately assessed to evaluate (the im-
pact of) diffuse soil pollution, demanding com-
plex analysis (Geissen et al. 2021).

Action

e New research and research update on the
partitioning of pollutants in different physi-
cal phases, and the behaviour, transporta-
tion and fate of existing and emerging soil
pollutants in soil, water and air, taking into
account site specific characteristics,

o Comprehensive and comparative review of
human activities’ impact on soil pollutant’s
move among the three compartments,

o Comparative review of the existing decision
support systems to assess their ability to
promote preventive decision making.

Bottleneck

« Institutional barriers (e.g. lack of person-
nel and laboratory facilities) hinder new
research and research updates on pol-
lutants’ characteristics and partitioning in
different matrices.
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3.2.4.(Knowledge gap 7) -
Baseline, Indicators/descriptors
and quality thresholds/criteria

Summary of the Knowledge Gap

There is a need for baselines and environmental
quality standards for the assessment and mon-
itoring of soil health. Natural background con-
centrations and natural variability of soils, the
physical and chemical state, and soil biodiversity
are relevant in this regard. Detailed soil monitor-
ing data are missing. Soil health descriptors and
accompanying quality thresholds should be es-
tablished, including a robust set of biodiversity
indicators, to allow for systematic and high qual-
ity monitoring and soil health assessment.

State of the Art

Setting up the baseline at EU level, assessing dif-
ferent local contexts, and taking into account the
industry specific hazards (UNEP 2024, Yacoub
et al. 2014) is a prerequisite to effectively imple-
ment actions and effective mechanisms to monitor
progress towards targets/implementation of mea-
sures. It is important to note that the impacts of
soil pollutants are site specific, as they depend on
soil characteristics and environmental conditions,
affecting also their transformation (reactions,
fragmentation, etc.), while transport can occur and
affect other areas, with other specific conditions.
Pollution is one of the many aspects which
can make a soil unhealthy: a polluted soil is con-
sidered an unhealthy soil. There are however sites
where high contamination level is not due to hu-
man activities. It is argued that in such a case soil
should not be considered unhealthy, if the natural
equilibrium is not disturbed (Vieira et al. 2024).
Different indicators/descriptors/indices and
accompanying quality thresholds/criteria for as-
sessing soil health have been described in scien-
tific literature. Vieira et al. (2024) refer to the use
of different pollution indices (Brtnicky et al. 2019,
Ferreira et al. 2022, Kowalska et al. 2018, Ferguson
1999) while Sun et al. (2020) compare the different
approaches of China and the UK. Kotschik et al.
(2024) underline the need to define and implement
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biodiversity indicators. Policy frameworks reflect
on that diversity (Ferguson 1999, Deseo et al.
2001, EEA 2023a). Andres et al. (2022) suggested
to include chemical residues, effect data for sail
organisms in combination with occuring habitats
to describe effects of chemicals on soil organisms.

However, a lack of understanding and
agreement remains on which indicators and cri-
teria to apply to define and assess (the progress
towards) soil health, levels of soil degradation,
and identify soils which need urgent restoration
(e.g. trigger and action values), and prioritisation.

Importantly, robust indicators to monitor ef-
fectiveness of soil management (prevention and
restoration) strategies to restore soil health are
needed. However, before starting monitoring pro-
grams of chemical residues in soils, the sets of to be
monitored chemicals and other pollution indicators,
as well as the sampling methods needs to be de-
fined. Soil organisms such as Acari and Collembola
and earthworms have been suggested to be po-
tentially good indicators to assess soil pollution and
effectiveness of management strategies (Sahana
2010, Xiao et al. 2022). Moreover, also nematodes
are candidates for indicators (FAO et al. 2020).

In order to efficiently set and achieve tar-
gets, a clear understanding of baselines, indica-
tors and quality thresholds is key.

Actions

e Review and comparative analysis of the
baselines with consideration given to site
specificity and natural contamination level,

e Gather knowledge on expectation abundanc-
es and diversity of in-soil biodiversity - start
with earthworms and develop indicators and
criteria for determining chemical and biolog-
ical soil health in view of soil diversity,

e Review and development of environmental
quality standards for pollution and soil bio-
diversity monitoring .

Bottleneck
o Ambiguity of the definition of soilhealthand its
indicators hinders comparative analysis and
establishing clear baselines, and harmonizing

environmental quality standards and targets.

133



Judit Pump et al.: Outlook on the knowledge gaps to soil pollution and restoration

3.2.5. (Knowledge Gap 8) - Overall
impact of soil pollution on wider
ecosystem functioning (beyond
soils)

Summary of the Knowledge Gap

The relationship between soil pollution and eco-
system functioning is not fully understood and/or
acknowledged, partly due to insufficient available
data. Thus there is a lack of a framework that ad-
dresses the aspects related to the link between
soil pollution, prevention and ecosystem func-
tioning in a spatiotemporal context. Soil functions
play a key role in why and how soil pollution af-
fects ecosystem functioning. While that role has
been extensively researched in a sector specific
context, there is a lack of a holistic approach that
simultaneously focusses on soil pollution and pre-
vention/remediation/ restoration choices.

State of the Art

‘Ecosystem functioning refers to the state or
trajectory of ecosystems in terms of innate
pathways and fluxes of energy, matter, and in-
formation occurring through essential ecosys-
tem processes, such as productivity, nutrient
and biogeochemical cycling, and ecological
network dynamics, from which is derived the
stability that supports ecosystem complexi-
ty at a larger scale’ (Correia and Lopes 2023).
Soil pollution threatens that stability. Numerous
studies have emphasised the importance and
severity of the negative impact of soil pollution
on the environment, on food security and hu-
man health (most recently European Commis-
sion: European Environment, Joint Research
Center et al. 2024, Vieira et al. 2024).

The need for a comprehensive soil protec-
tion has been recognised since the 1990s and
the EU acted upon it in the early years of 2000
by adopting thematic strategies addressing all
the issues mentioned (Semikolennykh 2008).
Since then, science has constantly reinforced,
provided new insights, and highlighted the grow-
ing severity of human-driven pollution induced
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disturbance of the ecosystem functioning and
its consequences, and the sectoral responses
to some of the consequences (for agriculture:
FAO 2023, FAO 2024a, Lord 2024, for industry:
Obeng-Odoom 2023, Liu et al. 2023). The adop-
tion of the Green Deal and the Zero Pollution Ac-
tion Plan is the acknowledgement of that threat.

Nature-based remediation technologies
use ecosystem services building on the support
of saoil functions. Thus, if soil functions are put
in the centre, four main ways can be identified
through which soil pollution affects directly and/
or indirectly the ecosystem functioning: 1. the im-
pairment of soil functions due to pollution caus-
ing negative changes in soil's physical, chemical
properties and its functional biodiversity which
are key to the provision of ecosystem services.
2. soil function that provides for the bioavailabil-
ity of pollutants, making plant uptake possible,
leading to accumulation of pollutants in the food
chain, 3. the transport of pollutants by water and
air, 4. intentional use of soil filtering/ detoxicat-
ing and/or plant uptake functions for remediation
purposes. Therefore, also when making decisions
on remediation technology, decision makers
should consider the impact of remediation on the
overall ecosystem functioning. All four pathways
affect the spatiotemporal scale of soil pollution.

While it is important to promote research
shedding light on the links between soil pollu-
tion and ecosystem functioning, and innovation
of new technologies and land and soil manage-
ment approaches, the main question remains
how to transform our economy (all sectors) to
ensure soil health and soil pollution prevention
are taken effectively into account, and to en-
sure the protection of ecosystem functioning
as the basis of human existence.

Actions

e Research on the links between soil pollution
and ecosystem functioning,

e Review and update the existing data in or-
der to establish the relationship between
pollution and ecosystem functioning,

o Development of a comprehensive analytical
framework to address spatiotemporal eco-
nomic, institutional and policy failures and
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identify decision making levels in order to
reach prevention of pollution.

o Systematic monitoring of changes in eco-
system functioning due to soil pollution
and/or prevention measures including res-
toration and remediation.

Bottleneck

o Differences in stakeholders’ perception on
the relationship between soil pollution and
ecosystem functioning and on the need for a
holistic approach hinder prevention oriented
policy development and decision making.,

o Sectoral interests related to soil pollution
and prevention lead to policy fragmentation
and contradiction, along with disproportion-
ate allocation and/or distortion of financial
resources and hinder the implementation of
prevention oriented policies.

o Differences in level of detail, sources (differ-
ent sectors, spatial and time scales, e tc....)
and structure of data hinder a holistic and
overarching framework addressing the im-
pact of prevention of soil pollution and reme-
diation/restoration on ecosystem functioning.

3.2.6. (Knowledge Gap 9) -
Technical/practical tools to
prevent agricultural soil pollution

Summary of the Knowledge Gap

Although a wide array of management practices
and technologies, including IPM strategies, agro-
ecological practices, agroforestry, conservation
and regenerative practices, biocontrol, monitor-
ing and precision technologies are available to
reduce, minimise or eliminate agricultural soil pol-
lution and restore soil health for many cropping
systems, there is still a need to further optimise
and develop these existing practices, methodol-
ogies and technologies. There is a need for the
compilation and translation of best available prac-
tices to minimise soil pollution and restoration into
crop-specific and pedoclimatic integrated pest/
crop management rules. Further research is still
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needed to develop and/or optimise these sustain-
able soil management practices and technologies
for all cropping systems, climatic and environ-
mental conditions and pests. The to be devel-
oped/compiled sustainable soil management
rules should be science-based; practice-proofed
and built on experiences in field projects gather-
ing independent scientific expertise and practice.
The use of functional biodiversity in increasing
natural pest control and decreasing dependence
on pesticides is a complex field, which needs
specialised adaptation to specific cropping sys-
tems and environments. Also, adequate risk as-
sessment systems are needed to effectively and
efficiently assess new technologies.

State of the Art

Integrated Pest Management (IPM) is based on
preventative measures, increasing natural pest
control (beneficial organisms) and the resilience
of cropping systems against pests, while only us-
ing chemical pesticides when all other methods
have been exhausted and failed. In this knowl-
edge gap 9, we highlight a few key aspects of
preventative agricultural measures on which re-
search and innovation should focus, to enhance
their further development and optimisation.

e IPMis considered key in reducing agricultur-
al soil pollution and restoring soil health. Al-
though very developed for a wide variety of
cropping systems, more research is indicat-
ed to further develop and optimise IPM for all
farming and cropping systems, and on the in-
tegrative assessment of the full range of ben-
efits associated with IPM, regarding e.g. soil
biodiversity and (soil) ecosystem services.

« E.g. Deguine et al. (2021)have highlighted
the lack of research on IPM/gaps in re-
search programs. They highlight that in-
tegrative, interdisciplinary research, e.g.
on soil and aboveground biodiversity and
interactions with agroecosystem compo-
nents, landscape ecology and its renewed
scales are still mostly missing (Begg et al.
2017, Brewer and Goodell 2012, Redlich et
al. 2018). The authors state that most re-
search on IPM tends to list and describe
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tactical solutions separately, in specific
contexts (e.g. focusing on a single pest,
single crop, specific context), rather than
scientifically understanding the advantage
of using them together to harness syner-
gy. There is a need for more integrative
assessments, which take into account dif-
ferent pests and all management aspects.
Important projects which have focused/are
focussing on taking into account all aspects
of IPM are the European ‘Pure’ project on
field crops (Vasileiadis et al. 2017 Vasile-
jadis et al. 2018, Lescourret 2017) and the
European IPM works project.

Agroecology encompasses the whole food
system, and is based on sustainable use of
local renewable resources, local farmers’
knowledge and priorities, wise use of bio-
diversity to provide ecosystem services
and resilience, and solutions that provide
multiple benefits (environmental, economic,
social) from local to global. It is based on
13 principles, including maintaining and en-
hancing soil health and biodiversity (Agro-
ecology Europe 2025). Available research
shows the benefits of agroecology for the
environment, including soil health, food
security and nutrition (Nicholls and and Al-
tieri 2018, Bezner Kerr et al. 2021). More
research is needed on best agroecological
practices for all relevant EU crops and farm-
ing systems. Specific identified research
needs to optimise agroecological (and IPM)
practices, as described by Deguine (2023),
include research on sustainable seed re-
sources and breeding, the electrochemical
soil- plant health model and microbiota-me-
diated plant-soil feedback.

Agroforestry is associated with reductions
in soil pollution, e.g. through the minimisa-
tion of pesticide use and risk, and the re-
duction of excess nitrogen and phosphorus
residues in soil, effectively contributing to
the restoration of soil health, while also re-
ducing the runoff/drift of soil pollution.
Biocontrol measures include the use of
macrobials, microbioals, natural substanc-
es or semiochemicals to prevent and con-
trol pests. Biocontrol has shown to be very

effective in a wide range of cropping sys-
tems, and decreases in the use of chemicals
in the field, as well as decreasing pressure
on soils, aboveground biodiversity and hu-
man health. The effectiveness of biocontrol
depends also on the functional biodiversity
present at field and landscape level, which
can greatly contribute to the effectiveness
of biocontrol. More research is needed on
the development of biocontrol agents for
a wider variety of pests and cropping sys-
tems, and on the interactions between all
categories of biocontrol and biodiversity.
Also specifically on the impacts of biocon-
trol on soil health, more research is needed.
Mechanical weeding technology/robots:
Nichols et al. (2015)described weed dy-
namics and the principles of conservation
agriculture, combining no-till, crop rotation
and surface residue, while underlining the
need for further research on tillage-residue
interactions and stacked rotation. Jiao et
al. (2024) and Lytridis and Pachidis (2024)
describe the advances in ground robotic
technologies for site- specific weed man-
agement. They highlight the importance
and significant promise of the technology,
and the need for specifically more research
on weed identification for real-time in open-
field conditions, and combined application
of mechanical and laserweeding.

Monitoring technology: Promising re-
search has been done on the monitoring
of plant and soil health using technology
such as drones, leading to effective appli-
cation and these practices being applied
more widely. More research is still indicat-
ed, e.g. regarding the detection of diseas-
es without visible symptoms. While more
research already focused on fungal pests,
less research has been done for virus,
nematic and abiotic diseases. Some crops/
fruits, such as grape and watermelon have
been researched more than others. While
more studies use field images, less stud-
ies use leaf or plant images. Therefore,
research on small- scale objects such as
leaves/individual plants will require high-
er- resolution visual inspections.
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Actions

e Research on IPM, agroecological, agrofor-
estry, and regenerative and conservation
practices, to optimise IPM for all relevant
EU crops/pests, and to assess all benefits
of IPM at landscape-scale level, in frame-
work of soil health, soil and aboveground
biodiversity and ecosystem services,

e Research on biocontrol measures, to ex-
tend biocontrol options for a wider variety
of pests and cropping systems,

e Research on technology/robotics to en-
hance monitoring of pests/crop health/soil
health and mechanical weeding,

o Further expanding, connecting and coordi-
nating living labs, lighthouses and regional
networks working on IPM, agroecology, agro-
forestry, conservation/ regenerative agricul-
ture, to expand testing of sustainable agricul-
tural practices, which minimise or eliminate
soil pollution and effectively restore soils,

e Research on ‘system innovation’, ‘system
shifts’, and the design of alternative crop-
ping and farming systems at regional/land-
scape level which effectively reduce soil
pollution and restore soils.

Bottlenecks

o Diversity in cropping systems, pests, and
conditions and farming systems in the EU
challenges the development of preventive
measures for all farming systems and envi-
ronmental conditions

e Lack of effective implementation and en-
forcement of environmental legislation and
effective spending of public funds, leading
to a lack of clear incentives, drivers and ob-
ligations for further development and opti-
misation of sustainable cropping practices,

o Fragmentation of projects, initiatives and
networks working on sustainable agricultural
soil management practices hinders the shift
to wide implementation of soil health and
prevention oriented agricultural practices.

o Conflicts of interests between e.g. agro-
chemical companies and further devel-
opment and optimisation of agronomic
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practices minimising inputs/soil pollution
hinder the implementation of preventative
and soil health oriented policies.

3.2.7. (Knowledge Gap 10)
Knowledge gaps regarding the
implementation and upscaling

of preventative measures to to
address agricultural soil pollution

Summary of Knowledge Gap

While a wide variety of agronomic practices
which effectively reduce, minimise or eliminate
soil pollution are available (see above), their wi-
descale implementation is still largely lacking. As
mentioned above, despite IPM being mandatory
in the EU through the Sustainable use of Pesti-
cides Regulation since 2014, multiple analyses of
EU bodies have pointed to the lack of implemen-
tation of IPM since then. Also the implementation
of biocontrol, agroecological, agroforestry, re-
generative and conservation practices is lacking.
Multiple knowledge gaps still exist regarding the
existing implementation gaps related to sustain-
able soil management practices in agriculture.

State of the Art

IPM is mandatory in the EU since 2014, through
the sustainable use of pesticides directive (Euro-
pean Parliament and of the Council 2009, SUD).
IPM, as formulated in the SUD, entails the growth
of a healthy crop with the least possible disrup-
tion to agro- ecosystems, and encouraging nat-
ural pest control mechanisms. IPM requires the
use of practices and products with the lowest
risk to human health and the environment. Al-
though many farmers throughout Europe have
been very successfully applying IPM and preven-
tative, low-input and nature-inclusive agricultur-
al practices, while maintaining stable yield and
profitability, wide-scale implementation has been
lacking (Mora et al. 2023), as was mentioned in
the introduction above. Knowledge gap 10 elab-
orates further on the knowledge gap related to
lack of implementation of available practices.
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Available research shows that IPM, and
agroecological and organic practices are asso-
ciated with environmental benefits, including for
soil health, and associated with stable yields and
profitability, frequently increasing profitability.
Nandillon et al. (2024) studied 1000 commercial
farms in the French DEPHY network and found
no correlation between the reduction of pesti-
cide use and changes in economic performance.
van der Ploeg et al. (2019) showed that agro-
ecology has a huge potential in offering farmers
more sustainable production of healthier food
while improving farmer’s incomes. Also Moura-
tiadou et al. (2024) concluded that agroecolog-
ical practices are associated more often with
positive socio-economic outcomes, although
magnitude, temporal aspects and success fac-
tors related to the outcomes, as well as trade-
offs and system-level effects need further as-
sessment. Lechenet et al. (2017) showed that
pesticide use can be greatly reduced through
the adoption of different production techniques,
and that low pesticide use rarely decreases pro-
ductivity and profitability in arable farms .Furlan
and Kreutzweiser (2015). The European Alliance
for Regenerative Agriculture found that regen-
erative practices led to a higher full productivi-
tiy, higher phtosynthesis, higher soil cover and
higher pland diversity, while using 61% less syn-
tetic nitrogen fertiliser and 75% less pesticides
(based on the Pesticide Load Indicator), while
only slightly reducing yield, and increasing gross
margin per hectare with 20% (European Alliance
for Regenerative Agriculture (EARA) 2025).

However, despite available research on the
success and effectiveness of IPM and agroeco-
logical practices, the widespread implementa-
tion of sustainable soil management practices,
which minimize soil pollution, is lacking.

Soil pollution is associated with many “lock-
in mechanisms”. Lock-in mechanisms can be
described as the barriers and underlying mech-
anisms that are holding back the transition to-
wards decreasing or preventing soil pollution. The
lock-in mechanisms of pesticide use were ana-
lyzed elaborately in the framework of the Sprint
project (Frelih-Larsen and Sprint project 2022).
These lock-in mechanisms include factors relat-
ed to farmer's perceptions and views (Vanino et

138

al. 2022), agronomy and research, economics,
knowledge and awareness and policy and regula-
tion. The fact that policy, funding and infrastruc-
ture mechanismes are focused on supporting a lim-
ited set of farming models and major crops poses
also an important bottleneck. Current agricultural
legislation and funding does not secure linkages
between funding and protection of the environ-
ment and enhancement of ecosystem services:
the lack of linkage between the Common Agricul-
tural Policy funding and the implementation of IPM/
ICM and restoration of soil health/minimisation of
soil pollution form an important barrier. Barriers to
large-scale adoption of IPM have also been iden-
tified by Deguine et al. (2021): lack of knowledge,
risk aversion, conflicts of interests between agri-
cultural advisers and the lobbying of agrochem-
ical companies, lack of technologies adapted to
local contexts, lack of clear and effective policies,
lack of collective and interdisciplinary action. Fur-
lan and Kreutzweiser (2015) showed that mutual
funds are a key tool for IPM implementation, illus-
trating this by focusing on the use of insecticides
for maize production in Italy.

Lack of implementation of IPM is also linked
to the lack of concrete crop-specific rules and
guidelines. The EC has recently published a data-
base of 1300 examples of practices, techniques
and technologies for IPM (European Commission
2023b), including 273 crop-specific guidelines,
accompanied by a study assessing their effec-
tiveness. However, there is a need for further
development of this database, to complement
it with all available knowledge and existing IPM
practices, and to further transform it into a user-
friendly database, which can be readily used by
farmers throughout Europe, selecting appropri-
ate best available IPM measures for their crop-
ping system and pedoclimate conditions. The
European Project Agrowise focuses on the prac-
tical implementation of IPM, the development of
crop-specific rules and the further development/
expansion/ improvement of the IPM toolbox.

Also, the supporting framework to implement
practices, such as independent (from business
interest) advisory systems, and hence access of
farmers to alternative management techniques,
are absolutely key in implementing available
practices much more widely. However, (access
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to) independent, high expertise advisory services
on IPM and sustainable soil management practic-
es have been lacking in most member states.
Nicholls and and Altieri (2018) find that the
revival of traditional agricultural systems can offer
promising models of sustainability and resilience,
and that the creation of lighthouses, which can of-
fer knowledge sharing and peer-to-peer learning
across farming communities, are key pathways to
effective implementation of agroecology. The IPM
works program is an example of very successful
implementation of IPM through the organisation
of regional hubs, coordinated by hub coordina-
tors, which allow for regional implementation of
IPM, trial-and-error and knowledge exchange.
The expertise gained, and lessons learned
through different initiatives involving the reduc-
tion of soil pollution and enhancement of sail
restoration, such as projects fostering the imple-
mentation IPM, agroecological practices, and or-
ganic agriculture, should be taken into account.
This information should contribute to an analysis
on which initiatives and supporting conditions
are effective would still be needed to increase
uptake of good practices throughout Europe.

Actions

e Research on the effective implementation
of IPM, agroecology and sustainable soil
management practices,

 Invest funds in the further development, co-
ordination, expansion and connection of re-
gional networks of farmers/lighthouses/living
labs working on the practical implementation
of sustainable agronomic practices,

e Research on needed policy action/imple-
mentation/enforcement to ensure align-
ment of policies and public funds with envi-
ronmental objectives,

o Foster the development of coordinated, in-
dependent advisory systems throughout
Europe, through the creation of active, liv-
ing knowledge sharing networks on best
available (implementation) practices,

e Research on the development of crop- and
sector- specific IPM rules, based on scientif-
ic expertise and best available practices, to
ensure the effective implementation of IPM
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o Further develop a toolbox with best avail-
able IPM, agroecological and sustainable
soil management practices,

o Research on key socio-economic drivers,
including on insurance mechanisms and in-
tegration/inclusion of the whole foodchain,
to ensure the effective uptake of sustain-
able soil management practices/IPM.

Bottlenecks

e Lack of effective implementation/enforce-
ment of current legislation and lack of link-
ages between environmental objectives and
public funding hinder changes and shift to-
wards wide implementation of soil health and
prevention oriented agricultural practices .

o Fragmentation of legislation at both nation-
al and international level and of existing ini-
tiatives (projects, EU/regional networks/na-
tional/local networks, etc....) focused on the
implementation of sustainable agronomic
practices lead to inefficient allocation of re-
sources and hinder shift to prevention and
soil health oriented agricultural practices.

o The complexity of the food chain, and ac-
companying challenges in involving the
whole food chain in fostering and ensuring
the implementation of sustainable soil man-
agement, hinder the shift to soil health-ori-
ented agricultural practices.

e Lock-in mechanism of agricultural soil pol-
lution (e.g. farmers’ perception and views
on soil pollution, then existing framework
of input providers, farmers, processing in-
dustry and retail, the current system of allo-
cation of agricultural funding, etc....) hinder
the implementation of prevention and soil
health oriented agricultural policy.

3.3. Overview of knowledge
gaps

An overview of the 10 knowledge gaps described
above, as well of the other knowledge gaps which
were identified can found under Suppl. material
1. The table summarizes the knowledge gaps,
their types and relevant land uses, actions which
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Table 6. shows the links between Figure 3. and Annexes of SML.

1) Soil pollution

2) Effects of pollution

Annex | Soil Descriptors, Criteria for Healthy Soil Condition, and Land Take and Soil Sealing Indicators

Annex Il Methodologies

Annex VI Phases and Requirements of Site-specific Risk Assessment
Annex VII Content of Register of Potentially Contaminated Sites and Contaminated Sites

3) Solutions to Soil Pollution

Annex lll. Sustainable Soil Management Principles — was deleted during the negotiations of the EU Parliament and

the EU Council

Annex IV Programmes, Plans, Targets and Measures referred to in Article 10
Annex V Indicative List of Risk Reduction Measures
Annex VI Phases and Requirements of Site-specific Risk Assessment

are recommended to address these knowledge
gaps, including the associated time frames, as
well as bottlenecks which may hamper these
recommended actions.

Further Steps/Notes

Next steps of the PRTT’s work include:

e Continuation of the stakeholder-involved
iterative process, where the list of knowl-
edge gaps and their prioritisation, actions
and bottlenecks will be revisited, updated
and complemented, to arrive to a final set of
10 prioritised knowledge gaps, with accom-
panying actions and bottlenecks, and an
updated list of additional knowledge gaps.

e The step above will potentially include the
identification of additional knowledge gaps,
which have not yet been prioritised nor list-
ed among the additional list.

o Based on the updated list of knowledge
gaps, actions and bottlenecks, which will
result from the further iterative process de-
scribed above, the document, will be fur-
ther developed and optimised, taking into
account feedback from stakeholders, re-
viewers and further literature review.

o Certain themes relevant to all three domains
of the conceptual framework still need fur-
ther inclusion and development, e.g. the
various aspects of decision- making related
to forestry, urban areas/contaminated sites,
tools to change behaviours, nutrient manage-
ment, the application of principles. The PRTT
will further consult with experts/stakeholders
on these specific topics, to strenghten these
topics in the next update of the document.
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e The PRTT will further develop the aspect of
definitions related to soil pollution, specifi-
cally regarding how different definitions will
have different consequences.

 In addition to the knowledge gaps, actions
to solve these knowledge gaps and bottle-
necks that may hinder these actions, the
further work in the PRTT will included the
identificaiton of the actions needed to tack-
le the identified bottlenecks.

Annexes

Supplementary tables

Monitoring requirements of the SML are set in
the Annexes of the SML proposal (European
Commission 2023a). Table 6. below clarifies the
relationship between the Annexes of the EU SML
proposal and the conceptual framework (Fig. 3)
of this outlook document.
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Introduction

SOLO project aims to deliver actionable trans-
disciplinary roadmaps for future soil-related re-
search and innovation activities in the EU, con-
tributing to the objectives of the EU Soil Mission.
To achieve this overarching goal, the project
employs a transdisciplinary task force known as
Think Tanks (TTs). Comprising 10 Think Tanks,
SOLO aligns these entities with the specific ob-
jectives established by the EU Mission Soil Deal
for Europe.

Within the Soil Erosion TT, this outlook fo-
cuses on the Soil Mission objective 5, “Prevent
erosion”, which seeks to reduce “the area of land
currently affected by unsustainable erosion from
25% to sustainable levels” (European Commis-
sion 2021). Evidence presented in the Soil Mis-
sion document, indicates that the majority of the
land affected by unsustainable erosion rates is
found in agricultural systems, where the severity
is higher compared to other systems (European
Commission 2021). Within agricultural areas, ac-
cording to the EC (European Commission 2021),
permanent crops are the most affected, and no-
table erosion rates were identified in the non-ag-
ricultural cover types of shrubland and sparse
vegetation. Based on the evidence gathered, the
EC (European Commission 2021) concludes that
“land failing soil health indicators due to soil ero-
sion equals 23% in cropland and 30% in non-ag-
ricultural areas”. According to the Soil Mission,
these figures call for urgent action, based on
contextual knowledge of both soils and human
activity, in order to halt or reverse the erosion
process.

Why do we need a Think
Tank focused on the
Prevention of Soil Erosion?

Knowledge on soil erosion is dispersed and
fragmented, requiring a TT to integrate various
sources of knowledge, not only by systematizing
it but also by exploring its interactions. At first,
we focused on this integration and systemic
approach around the prevention of soil erosion.
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Currently, we have extended this effort consid-
ering the interactions between TTs and priorities.

Aligned with the Soil Mission strategy, we
engaged non-academic stakeholders in the
identification of solutions to the problem of
soil erosion and its prevention and mitigation.
Hence, the TT serves as a platform that allows
engagement, collaborative thinking and actions
towards prevention and mitigation of soil ero-
sion problems.

Finally, this TT aims to support the chal-
lenge of working across and linking different
scales. Our goal is not to confine the discussion
to the European level but to root the work of the
TT in local/regional/national contexts where the
problems arise. The SOLO TTs have identified 2
main types of knowledge gaps (KGs):

1. Knowledge Development Gap: a knowl-
edge gap that requires generating new in-
formation or understanding by research or
innovation, inclusive of both natural and so-
cial sciences and humanities’ contributions.

2. Knowledge Application Gap: a knowledge
gap that requires research or innovation
to find and test new mechanisms that al-
low the effective implementation of already
existing information or understanding. This
knowledge gap hence concentrates on the
deficient links between available knowledge
and its application.

Note that these two concepts, Knowledge
Development Gap and Knowledge Application
Gap, are central in the entire project and, there-
fore, key concepts in the development and out-
comes of the SOLO project. To support the iden-
tification, integration and prioritization process,
our TT has strategically incorporated three dis-
tinct categories of experts:

o Soil-Related Scientists:

Experts in this category bring specialized
knowledge in soil-related sciences. Their exper-
tise is crucial for discerning gaps within existing
Research and Innovation priorities related to soil
erosion, which also includes Social Sciences’ and
Humanities’ insights.
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e Practitioners:

The inclusion of practitioners is vital for a
grounded perspective. Producers, advisors, civ-
il society organisations and policy makers are
considered in this category. These experts bring
first-hand experience and practical insights,
shedding light on challenges faced during the
actual application of existing and transferred
knowledge.

e Implementation and Integration Scientists:

This group focuses on the practical as-
pects of knowledge integration (Hoffmann et
al. 2022). Their role is pivotal in bridging the di-
versity of knowledge types by identifying and
addressing the missing links. Moreover, they
contribute with insights into overcoming chal-
lenges associated with the implementation of
knowledge in diverse contexts.

Collectively, the above category of expert
worked in an iterative way to prepare this out-
look document. Based on previous work (see
the 2024 Scoping Document by a large team:
Guimardes et al. 2024), the current outlook de-
scribes the prioritization process for the 24 KGs
previously identified while providing further ar-
guments about priorities. Aware that we have
not yet involved all necessary experts or fully
systematized the available and ongoing efforts
related to soil erosion, we appreciate the time
and effort to revise the current version. We are
confident that your contribution will enhance
this document, ensuring a more accurate reflec-
tion of the knowledge gaps that need to be ad-
dressed in the future EU Research and Innova-
tion agenda.

State-of-the-Art

Current state of the
knowledge on Soil Erosion

Soil erosion is a natural process important for
shaping landforms (Dubey et al. 2023). However,
when it occurs at rates that exceed soil forma-
tion, it adversely impacts most of the ecosystem

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

services provided by soils, which are the basis
of the EU soil strategy for defining healthy soils
(European Commission 2006; European Com-
mission 2021; Beste 2015; Itther and Naumann
2022). Soil erosion is the detachment and trans-
port of sediments by erosive agents, including
rainfall, runoff, wind, tillage and co-extraction on
root crops and land-based machinery (Breshears
et al. 2003; Panagos et al. 2015; Cerda et
al. 2017; Rickson 2023). Soil is considered a
non-renewable resource from the perspective
of human lifespan (Di Stefano et al. 2023) and
in different settings, related to human inter-
ventions into land systems, soil erosion largely
surpasses the soil formation rate. While there is
no consensus among the scientific community
regarding the tolerable rate of soil erosion, it is
suggested a range between 0.3 and 1.4 t ha yr
1, based on soil formation rates (Verheijen et al.
2009). Soil erosion primarily acts on the topsoil
and can range from sheet and rill erosion to gul-
ly erosion, which extends into deeper soil layers.
It can also impact the subsurface through pro-
cesses such as piping and/or lateral subsurface
erosion. Soil erosion removes the most valuable
fraction of the soil (i.e., organic horizon), which
typically contains the highest content of organic
matter and nutrients, the most intensive soil life,
and possesses the highest capacity to support
life (Poesen 2018; Koch et al. 2013; Eekhout and
de Vente 2022). Therefore, the impact of soil
erosion is not only the quantity of removed soil
mass, but also the loss of associated soil func-
tions (Lal 2010). Moreover, soil loss can have
relevant repercussions in agroecosystems (food
and timber production, water regulation, carbon
sequestration, nutrient cycling and biodiversity),
highlighting the need to increase the inputs to
effectively manage agricultural and forestry pro-
duction (Milazzo et al. 2023). Soil erosion may
increase the on-site desertification risk through
two mechanisms: by reducing soil water re-
tention capacity and by reducing soil fertility,
which is driven by soil organic carbon losses
(Gonzalez-Pelayo et al. 2024). This diminishes
both evapotranspiration and temperature reg-
ulation capabilities. Furthermore, eroded soils
lose their ability to support life, thus amplifying
air temperature increases and indirectly exac-
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erbating climate change. Soil erosion can also
create deep and fertile soils in deltas and fluvial
terraces under natural or geological soil erosion
rates. However, an accelerated soil erosion rate
can contribute to the degradation of the soils
developed in lowlands as a consequence of the
excessive sedimentation. This watershed and
basin scale process can be found also at field
and slope scale when soil erosion is accelerated
as a consequence of tillage such as the increase
in connectivity of sediments and water (Rodrigo
Comino et al. 2018).

Soil erosion also accounts for multiple off-
site effects (Panagos et al. 2024b), such as in-
creasing sediment, nutrient and pollutant con-
centrations in water, therefore hindering aquatic
life, water quality, or reducing water storage ca-
pacity, and increasing water treatment expendi-
tures, as well as the risk of flooding and debris
flow during high rainfall and runoff events. It is
estimated that sediment accumulation, resulting
from soil erosion in the EU’s large reservoirs (ap-
proximately 5000 in total) exceeds 1 billion m?3,
with an anticipated cost of ranging from 5 to 8
billion € annually (Panagos et al. 2024a). Fig. 1
exemplifies soil erosion effects.

@® O ¢ SOILSFOREUROPE

SOLO Erosion
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The monitoring of soil erosion and its im-
pacts are among the greatest challenges involv-
ing erosion studies (Huber et al. 2009). Besides
field monitoring, there is a wide variety of soil
erosion models (Batista et al. 2019; Karydas et
al. 2015; Zdruli et al. 2016) making use of diverse
spatio-temporal scales (Borrellietal. 2021). Ines-
sence, both past and recent model applications
provide estimates of susceptibility to soil erosion
for natural landscapes, forests and croplands,
spanning from the global scale down to the plot
scale, and even incorporating projected climate
change scenarios (Borrelli et al. 2023; Borrelli et
al. 2022; Vieira et al. 2025). Such a top-down ap-
proach, based on consistent methodology, can
be very informative. Up to date, the dominant
focus in erosion modelling lies on water-induced
erosion, accounting for approximately 95% of the
studies. Conversely, modelling on wind erosion,
tillage and co-extraction on root crops and land-
based machinery remains relatively limited (Bor-
relli et al. 2021). While modeling efforts have ad-
vanced, it is important to recognize that models
have limitations (Schmaltz and Johannsen 2024),
and thus, measured empirical data is essential,
as models need validation (Batista et al. 2019)

If there is
no soil... there

is nothing
elsel

My livelihood is the
most important thing:
my future, my farm,
my children!

I am hungry!

Climate
change! Stop my house

from flooding!

BEDROCK

Figure 1. Social, economic and environmental impacts of soil erosion.
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and cannot integrate the complexity of interac-
tions governing all the erosion processes, par-
ticularly the multi-process modelling approach.
Field monitoring capturing high-resolution data-
sets and conducting thorough long-term periods
have been essential to enable models to achieve
better calibrations, as well as facilitate effective
validations (Alexiou et al. 2023). Moreover, for
field studies to be considered suitable in mod-
elling, they must rely on accessible and compa-
rable methodologies. Initiatives such as the EU-
SEDcollab database (Matthews et al. 2023) may
represent a paradigm shift, providing open-ac-
cess and harmonized catchment data from vari-
ous European countries, particularly relevant for
soil erosion modelling. While such initiatives are
scarce, they represent a significant endeavor to
leverage inaccessible and potentially unknown
data (Panagos et al. 2022).

Several soil erosion prevention and mitiga-
tion measures are recognized, but their adoption
among practitioners remains challenging. The
effectiveness of these measures depends on the
site's specific features such as topography/geo-
morphology, soil characteristics, climatic condi-
tions, and land management. Nevertheless, the
most common practices can be categorized in
three broader mechanisms: 1) Providing the soil
with a protective cover to avoid direct rain splash
and slow down runoff, e.g., planting temporary
cover crops, grass, shrubs, and trees, or applying
mulch (Girona-Garcia et al. 2021; El-Beltagi et al.
2022); 2) Maintaining or enhancing soil particle
stability by adopting no-tillage or reduced till-
age practices, or by incorporating organic mat-
ter or synthetic amendments and/or industrial
by-products e.g., polyacrylamide, or lignosulfon-
ates, that improve soil structure and resistance
to detachment and increase water infiltration
(Prats et al. 2014; Vakili et al. 2024); 3) Increas-
ing soil roughness in sloped areas to reduce run-
off velocity and enhance water infiltration, e.g.,
ridge and furrow aligned with the contour, con-
tour ploughing, terracing, or vegetative buffer
strips (Wei et al. 2016; Mak-Mensah et al. 2022).
The use of financial incentives, increased aware-
ness among landowners, participation of inno-
vative farmers and contractors, as well as good
advisory and standardized services can contrib-
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ute to solving problematic situations (Prasuhn
2020). Furthermore, education in soil science
and ecology remains critically underrepresented
across multiple levels - from school curricula to
professional practitioners and broader society,
including citizens, policymakers and even tech-
nical experts (Charzynski et al. 2022;Cerda and
Rodrigo-Comino 2021; Katikas et al. 2024; Pe-
tratou et al. 2023; CURIOSOIL 2024). Increasing
soil literacy, with particular emphasis on soil ero-
sion, represents both an urgent and valuable op-
portunity for sustainable land management and
healthier soils.

Missing knowledge concerning Erosion
Prevention is primarily centered on the need
for data and evidence on natural processes;
and knowledge application gaps that encom-
pass socio-cultural and economic barriers and
challenges, as well as governance, society and
cultural barriers. Consequently, our Think Tank
has necessarily adopted an interdisciplinary and
systems thinking approach to address the issue
at hand. From this effort, a total of 24 knowledge
gaps (Suppl. material 1, Table 2, see supplemen-
tary files) were identified and detailed in Guim-
ardes et al. 2024. In the next section, we present
the top 10 knowledge gaps identified through a
prioritization exercise conducted over the past
few months by SOLO partners and participants
in the Think Tank activities across all 10 Think
Tanks supported by the project.

Knowledge Gaps

Prioritization of knowledge
gaps

Fig. 2 illustrates the structure and organization of
the Think Tank in addressing various knowledge
gaps, beginning with those related to the drivers
of soil erosion. This outlook then delves into the
details of the soil erosion process and its quan-
tification, progressing toward an understanding
of its impacts. Building on this, the analysis ex-
plores knowledge gaps concerning actions for
prevention, mitigation, and recovery, while also
examining the costs and benefits of proactive
and reactive approaches.
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Figure 2. Think Tank’s approach to the identification of Knowledge Gaps (developed by the authors).

Table 1 presents the top 10 knowledge gaps
identified. In the following section, we focus on
the top three gaps, providing arguments for their
importance and prioritization. The two primary
knowledge gaps selected highlight the need for
a co-construction approach that transcends dis-
ciplinary collaboration, emphasizing a transdisci-
plinary effort that actively involves practitioners.
It is important to note that this selection does not
diminish the critical value of the remaining knowl-
edge gaps identified, as all are important. Our pri-
oritization is justified by two main arguments: first,

adopting a transdisciplinary approach can accel-
erate the generation and application of knowledge
along an urgent pathway to mitigate soil erosion.
Second, developing effective techniques and
tools to support practical applications requires
high-quality data and the parallel fostering of ro-
bust disciplinary and interdisciplinary collabora-
tion. It is also important to highlight that many of
the knowledge gaps identified imply the interac-
tion between researchers and practitioners. The
quality of this interaction is paramount and should
be approached with a sense of responsibility and

Table 1. Ranking of the top 10 knowledge gaps identified by the Prevention of Soil Erosion Think Tank.

Rank ‘ Knowledge gap ‘ Type of knowledge gap
1 Co-construction of soil erosion prevention techniques and field strategies with practitioners Knowledge Application Gap
2 Co-developing tools that can support managers’ and landowners’ decision making Knowledge Application Gap
3 Representation of ecosystem services’ losses following soil erosion Knowledge Development Gap
4 Soil erosion risk maps Knowledge Application Gap
5 Interactions between natural and anthropogenic soil erosion processes, and societal impacts Knowledge Development Gap
6 Establishing a Soil Erosion Monitoring Network at the EU level, including long-term experimental sites Knowledge Development Gap
7 Raise awareness about soil erosion and its impacts Knowledge Application Gap
8 Setting benchmarks for soil health Knowledge Development Gap
9 Scientific evidence of potential benefits and context-specific trade-offs of Nature-based solutions Knowledge Development Gap
10 Soil erosion rates inclusive of erosion processes at various scales Knowledge Development Gap
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respect towards the social relationships that are
created. As such, we also take the opportunity to
highlight the importance of allocating resources
to experts and expertise on integration (Hoffmann
et al. 2022) to secure the conditions for collective
actions that benefit all parties involved.

Roadmap
Key knowledge gaps

o 1t Key Knowledge Gap: There is a need
to co-construct soil erosion prevention
techniques and field strategies with prac-
titioners

To ensure sustainable soil use, there is a
pressing need to assess and further develop
both current and innovative soil erosion preven-
tion techniques and field strategies in collabora-
tion with practitioners and those in a position to
act. While soil erosion control measures — such
as cover crops, reduced or no-tillage techniques,
and contour cropping — are already available, an
effective strategy requires systematically tai-
loring and integrating these measures to fit the
specific local environmental and livelihood con-
texts where soil erosion is a concern. In this re-
gard, regenerative agriculture (along with con-
servation agriculture), which comprises farming
principles and practices that prioritize soil
health, biodiversity, and the resilience of natural
ecosystems, holds significant potential. Regen-
erative agriculture looks to restore soil health
through the reinvigoration of the natural interac-
tions between plants, animals and organisms on
which crop growth relies (Kearnes and Rickards
2020), and to reduce inputs of agricultural pes-
ticides and fertilizers. Using regenerative tech-
niques can significantly benefit soils at risk of
erosion by maintaining vegetation cover during
Winter, promoting deeper-rooting and more di-
verse plant species. Combined with the support
to reduced tillage, these practices enhance crop
quality while stabilizing and improving soil micro-
bial and invertebrate health.

A primary focus should be on implementing
evidence-led, locally appropriate Nature-based
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Solutions (NbS) or soil-improving cropping sys-
tems (Oenema et al. 2018), which specifically
target soil erosion hotspots and their off-site ef-
fects (e.g., cover crops, contour traffic, minimum
tillage). To effectively reduce soil loss, NbS must
be clearly classified, and existing projects should
be identified, characterized, and assessed (e.g.,
Rodrigo-Comino et al. 2019; Cerda et al. 2022).
This initial diagnosis is critical for identify-
ing contexts (geographical, land use, and NbS
types) that are not yet covered by any or a par-
ticular type of NbS but are relevant to increase
evidence of their effectiveness in reducing soil
erosion (e.g., Olinic et al. 2024). It is important to
establish monitoring protocols to assess ongo-
ing NbS projects and practices, as well as those
that may be implemented in the future, based
on a system of Key Performance Indicators that
allows for the assessment of the quality of tech-
nical application, benefits and trade-offs, and
costs (e.g., Gonzalez-Ollauri et al. 2021). Such an
assessment will also highlight front-runners, that
is, all NbS initiatives that are likely to stand out
as examples that can be replicated in similar so-
cio-ecological contexts. However, the effective-
ness and out-scaling of NbS and, consequently,
the achievement of objectives aimed at soil con-
servation, will only be realized if the key-stake-
holders actively participate in the co-construc-
tion of those solutions, thus owning them and
fully understanding the benefits resulting from
their application. Participatory monitoring and
assessment of impacts is critical to enable so-
cial learning and speed up the implementation
of effective disturbance-smart and regenerative
land use and NbS targeted to reduce soil erosion
(e.g., Lujan Soto et al. 2021).

Polyakov et al. (2023) also highlights the
importance of collaborative approaches to col-
lect accurate, spatially distributed data on soil
erosion, which is essential for co-developing
effective prevention techniques tailored to local
conditions. Similarly, Lima et al. (2017) underline
the value of iterative design and practical ap-
plication in soil erosion prevention, emphasizing
the need for co-construction with practitioners
to ensure strategies are workable, effective,
and context specific. The ongoing demand for
data validation (Polyakov et al. 2023) further
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highlights the critical role of practitioners in en-
suring that soil erosion prevention measures are
grounded in the complexities of real-world ap-
plications. However, such data remains scarce
and difficult to obtain (Wang et al. 2024), not
least because of the time and resources need-
ed for key actors to participate and contribute
with data, and often requires a stepwise ap-
proach to ensure systematic collection and in-
tegration. While we can suggest conservative
and regenerative measures, without dedicated
demonstration sites and financial support for
practitioners, acceptance may remain limited.
To address this issue, Soil Mission Lighthous-
es serve as an important interface and demon-
stration platform, showcasing the best man-
agement practices to prevent soil erosion under
local conditions. This fosters knowledge ex-
change between scientists, policymakers, and
land users, building trust and encouraging the
adoption of innovative soil protection measures.
Furthermore, productivity and financial support
guarantees are essential for farmers, forest-
ers, and other land managers to take the risk
of implementing alternative measures instead
of conventional ones. Within the framework of
Soil Mission Lighthouses and their inherently
transdisciplinary nature, establishing a strong
governance structure is essential. This requires
partnerships that include not only researchers
and practitioners but also implementation and
integration experts who are responsible for en-
suring integration and overseeing the process
(Hoffmann et al. 2022).

Lastly, data scarcity and the recurring ar-
guments justifying information gaps are not new.
Initiatives such as EUSEDcollab, an open-ac-
cess database which compiles data on runoff,
soil loss by water erosion and sediment delivery
(Matthews et al. 2023), are positive and should
be continually supported, but gaps in data repre-
sentativeness persist, leading to datasets that do
not adequately represent the wide range of geo-
graphical, environmental, and land management
contexts where soil erosion occurs. Overcoming
these issues requires testing new measurement
approaches through the integration of remote
sensing-based innovation and technology that
allows for upscaled estimates (e.g., Mani¢ et al.
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2022; Alexiou et al. 2023;Alexiou et al. 2024).
This integration must be done step by step: from
field-based measurements to terrestrial scan-
ning (e.g., Terrestrial Laser Scanning, t-LiDAR),
from these to aircraft systems (equipped with
high-resolution LiDAR, Radar, and hyperspec-
tral sensors), and finally from aircraft systems to
satellite imagery.

« 2" Key Knowledge Gap: There is a need to
co-develop tools that can support manag-
ers’ and landowners’ decision making

While monitoring systems and modelling
tools play a pivotal role in supporting and en-
hancing decision-making processes, it is equally
essential to engage with managers and landown-
ers while co-developing tools that can support
(orinfluence) their decision making. Understand-
ing their motivations during land management is
critical, and collaborative approaches and gover-
nance mechanisms need to be developed joint-
ly (Panagos et al. 2020a; Briassoulis 2011). For
instance, Debeljak et al. (2019) designed a deci-
sion support system to assist land managers in
assessing and improving soil functions, demon-
strating how such tools can be co-developed to
align with practical needs. Similarly, Terribile et
al. (2024) highlights how co-designed decision
support systems can empower stakeholders to
protect soils and land, emphasizing the role of in-
novative tools in facilitating decision-making for
erosion prevention. Borrelli et al. (2023) showed
the importance of tools that integrate complex
datasets to support managers in mitigating soil
erosion risks effectively, whereas a multi-model
approach had a critical role in identifying erosion
hotspots globally, thus providing significant data
for policymakers and land managers. Stankovics
et al. (2024) demonstrated the LANDSUPPORT
project which developed a geospatial Decision
Support System (DSS) through a collaborative
approach with policy stakeholders. This system
integrates data across multiple scales — local,
regional, national, and European Union levels
— to assist in sustainable land management
and soil protection. The co-design process in-
volved extensive user engagement, including
semi-structured interviews and questionnaires,
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ensuring the DSS met the practical needs of its
users. In line with this, the EU SoilCare project
developed an interactive mapping tool that spa-
tially visualises where in Europe soil-improving
cropping systems (SICS) can be most effectively
applied (SoilCare 2025). Additionally, the ongo-
ing TERRASAFE project (2024-2029) is building
tools to map desertification hotspots in Southern
Europe and North Africa through a multi-actor,
co-designed approach with local communities
(TERRASAFE 2025).

This engagement of end users (land man-
agers and landowners) not only ensures the inte-
gration of their management and response needs
into the tools available to practitioners, but also
stimulates an architecture and configuration that
promote their widespread use. These decision
support tools and systems serve as an interface
between scientific knowledge and practitioners,
and as such, they must be easy to access and
use. The joint effort of land managers, research-
ers and technological developers could lead to
the design of tools that blend practical experi-
ence with cutting-edge technology, such as digi-
tal mapping systems, decision-support systems,
or predictive models for sustainable land man-
agement. Additionally, such tools must be flex-
ible enough to evolve continually and enhance
decisions by integrating new knowledge. There-
fore, by maintaining a collaborative relationship,
feedback loops can be established where tools
are continually tested and improved. This en-
sures that tools remain relevant and effective
even in the face of changing environmental, eco-
nomic, and regulatory conditions. Given the ex-
istence of tools already co-developed, it would
be valuable to test them with a broader range of
end users beyond those involved in their design
in order to reach higher maturity levels.

However, soil erosion problems can also
be associated with a lack of knowledge, under-
standing and/or appreciation of the importance of
healthy soils for all aspects of human life, amongst
other things (Johnson et al. 2020; Katikas et al.
2024). This lack of knowledge or understanding,
referred to as ‘soil illiteracy’ is not always asso-
ciated with those ‘on the ground although food
producers, farmers, land managers and society,
in general, can sometimes lack such knowledge.
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Indeed, although there are several drivers for un-
sustainable soil management practices, low lev-
els of soil literacy is one of them. All too often,
though, the lack of soil literacy extends upwards
to those making decisions about land use, and
land use changes, and further upwards still to
those making policies. There is clearly an urgent
need to build skills and knowledge in recognizing
and assessing soil health related to specific local
contexts and soil types, and to build an apprecia-
tion in wider society of the importance of under-
standing the role that soil health - and good soil
management - play in securing food production,
land use, and multiple other ecosystem services
without which our society would be at risk of col-
lapse (Johnson et al. 2024;Brevik et al. 2019).
Given how interconnected soil health is with var-
ious economic sectors, cultural values and pro-
cesses at different scales, it is equally important
to acknowledge the need for systemic, transfor-
mative change towards a more sustainable para-
digm (Gosnell et al. 2019; McLennon et al. 2021).

+ 3 Key Knowledge Gap: Representation of
ecosystem services’ losses following soil
erosion

While acknowledging soil erosion’s rele-
vance, we currently lack a comprehensive un-
derstanding of its role in other critical processes,
such as carbon budgeting, transport and fate of
contaminants (Yang et al. 2025; Vieira et al. 2024;
Silva et al. 2015), metals (Campos et al. 2016),
nutrient loss (Prats et al. 2023), climate change
and biodiversity (Obalum et al. 2017; European
Environment Agency et al. 2024). Soil is the most
biodiverse ecosystem on the globe, home to
more than half of all known species, and several
interacting ecological processes are dependent
from this compositional and functional diversity
(Anthony et al. 2023). Soil erosion and diversity
maintain a mutual relationship that must be inte-
grated in soil erosion prediction models (Orgiazzi
and Panagos 2018). Soil erosion has also been
identified as a disruptor of the carbon cycle, re-
ducing soil organic carbon storage and increasing
greenhouse gas emissions (Zheng et al. 2025).

However, a broader representation of these
losses - both on- and off-site - is missing, hin-
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dering a complete understanding of the envi-
ronmental impacts of erosion. It is imperative to
quantitatively, as well as qualitatively, represent
the losses of ecosystem services following soil
erosion and concurrently occurring soil degrada-
tion processes (Krull et al. 2004; Keesstra et al.
2018a; Jacob et al. 2021). The links between soil
erosion and the resulting declines in agroeco-
system conditions remain poorly understood. In
particular, erosion-induced losses and their di-
rect consequences, such as the diminished abil-
ity of ecosystems to provide essential services
like crop production and water regulation, should
be effectively quantified and integrated into sus-
tainability frameworks (Rendon et al. 2020; Stein-
hoff-Knopp et al. 2021). Establishing and quanti-
fying the relationships between soil erosion and
other ecosystem services will allow the optimiza-
tion of soil management solutions that contribute
to maximize positive effects at the lowest cost.

Moreover, quantifying and, particularly,
valuing the effects of soil erosion on other eco-
system services is of paramount importance, as
it makes the assessment of the benefits more
comprehensive and effective, and increases
the ability to measure and implement synergies
between human activities and soil ecosystem
services (Fernandes et al. 2019; Petratou et al.
2023). For example, Pires-Marques et al. (2021)
estimated the avoided costs of soil erosion in
a mountainous region of northern Portugal at
€1144/ha/ year using an indirect market valua-
tion method. To implement effective trade-off
mechanisms in planning and management, it is
crucial not only to consider formal objectives but
also to develop a functional contractual system
and fair incentive mechanisms. These incentives
must be attractive enough to discourage unsus-
tainable land use (Fernandes et al. 2019), such as
payments for ecosystem services, market-driven
instruments, habitat banking, biodiversity offset-
ting, Tax Increment Financing, tax incentives, and
subsidies. Learning from CAP implementation, it
is also important that incentive requirements are
ambitious (both at EU and Member State level),
and that, in complex incentive schemes, assess-
ing the results of measures that specifically ad-
dress sustainable soil management is promoted
(European Court of Auditors 2023).
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Prioritized knowledge gaps

 Soil erosion risk maps

Soil erosion and degradation processes
are not experienced equitably across the world.
Therefore, the need for soil erosion risk maps
to encompass various types of soil erosion, in-
cluding potential mitigations and restoration
measures, is indispensable for anticipating when
and where soil erosion might occur at unsustain-
able rates (Parente et al. 2022). Nevertheless,
the creation of such maps is either lacking or
not uniformly conducted on a standardized and
comprehensive scale across Europe. Current
challenges are exacerbated by the variability in
methodologies, which complicates meaningful
comparisons and hinders effective policy appli-
cations. Integrating sediment connectivity mod-
elling can significantly enhance the accuracy of
soil erosion risk maps, especially when support-
ed by validation with empirical data (Schmaltz
and Johannsen 2024). Furthermore, recent ad-
vancements in Artificial Intelligence and machine
learning models have the potential to significant-
ly enhance the accuracy and adaptability of sall
erosion risk maps. However, despite these tech-
nological developments, their application in soil
erosion modeling remains largely unexplored.
Samarinas et al. (2024) demonstrated that inte-
grating high-resolution geospatial layers into the
RUSLE model enables Al-based approaches to
generate soil erodibility maps at a 10m resolu-
tion, surpassing the limitations of previous mod-
eling assessments. These maps could greatly
benefit decision-makers, not only in identifying
vulnerable areas but also in assessing the ef-
fectiveness of different mitigation/restoration
techniques (Vieira et al. 2023). In the European
context, such tools are essential for pinpointing
regions with the highest erosion risk. Soil ero-
sion disproportionately affects vulnerable pop-
ulations in the most fragile ecosystems, with
impacts on health, nutrition, and development
opportunities (FAO 2019; Murage et al. 2024).
Soil erosion prediction scenarios should provide
information on the magnitude of consequences,
including off-site effects and subsequent risk
assessment (Panagos et al. 2020, Parente et
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al. 2022, Parente et al. 2023). Developing ,risk
maps"” as policy tools is crucial and should be pri-
oritized for swift action, since even large scale
maps can identify hotspots requiring local inves-
tigation, which in turn can trigger action in areas
with higher need for sustainable management.
Their development must be accompanied by a
sound delimitation methodology, as well as by
effective norms regarding authorized land use
and its monitoring.

» Interactions between natural and anthro-
pogenic soil erosion processes, and soci-
etal impacts

While our current knowledge base is robust,
there is a crucial need for a deeper comprehen-
sion of natural and anthropogenic soil erosion
processes, and the societal drivers and impacts,
especially focusing on their intricate interactions,
as it is this complexity that determines the real
dimensions of the problem (Field et al. 2009;
Ravi et al. 2010). Soil health is a critical driver
of the economic potential of the food produc-
tion sector and, through that, inevitably impacts
on the social and cultural health of agricultural
communities and society in general (Davis et al.
2023). Addressing this knowledge gap requires
a concentrated effort on interactions operating
across diverse spatial and temporal scales, with
an emphasis on predicting rates and assessing
both onsite and wider off-site impacts, such as
socio-economic and cultural impacts. In addition,
climate change-induced shifts in rainfall patterns,
land use, and population distribution are altering
erosion dynamics. Therefore, it is essential to in-
tegrate socio-environmental drivers into soil ero-
sion assessments. Lagacherie et al. (2018) high-
lighted that Mediterranean soils are particularly
vulnerable to the cascading effects of drought,
torrential rainfall, wildfires and changing land-use
practices. Likewise, urbanization and soil sealing
increase surface runoff, leading to heightened
sediment transport in peri-urban areas. This un-
derscores the need for interdisciplinary research
that links soil erosion processes with societal
impacts. Therefore, the above-mentioned risk
maps should not only focus on the physical and
environmental aspects of soil erosion but also in-
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tegrate socio-economic data to identify regions
where the impacts of erosion are likely to impose
adversities for communities.

« Establishing a Soil Erosion Monitoring Net-
work at the EU level, including long-term
experimental sites

Bridging the identified gaps requires com-
prehensive monitoring data combined with local
context-specific socio-economic and cultural
knowledge, which is currently one of the primary
knowledge deficits in the soil erosion field. Es-
tablishing a Soil Erosion Monitoring Network at
the EU level, incorporating local-scale monitor-
ing and knowledge exchange systems involving
local environmental knowledge and citizen sci-
ence activities, is essential to address this gap
(Prats et al. 2022). Borrelli et al. (2016) identified
deforestation, logging, and wildfires as key ac-
celerators of soil erosion in Mediterranean for-
ests. However, the absence of a standardized,
long-term monitoring network limits the ability
to accurately quantify their cumulative impacts,
particularly those related to cover changes, land
abandonment, and agricultural intensification.
Integrating multiple scales is paramount for im-
proving future soil erosion assessments, as well
as for validating and improving soil erosion mod-
els. Special attention is required in the unique
pedo-climatic zones of Europe, necessitating
the urgent establishment of long-term experi-
mental sites to enhance our understanding of
the dimension of soil erosion processes. For ex-
ample, in arid and semi-arid regions, where low
vegetation cover, soil crusting, and irregular pre-
cipitation patterns prevail, soil erosion is often
the result of multiple interacting drivers, includ-
ing wind, water, and other less-quantified fac-
tors like tillage, crop, and irrigation management,
whose combined effects are particularly severe
and still insufficiently quantified (Garcia Ruiz et
al. 2013; Boardman et al. 2019).

+ Raise awareness about soil erosion and its
impacts

Soil erosion poses a significant threat to
ecosystems, economies, and human well-be-
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ing. Steps must be taken urgently to increase
public awareness of its consequences and the
necessary preventive measures (Chicas et al.
2016; Prats et al. 2022). Society needs a deeper
understanding of the current situation, the risks
involved, and the actions required to prevent
soil erosion.

One effective approach is the develop-
ment of a comprehensive guide that highlights
the importance of soil, the risks associated with
erosion, its impacts on life and ecosystem ser-
vices, and the resulting economic implications
(Dazzi and Lo Papa 2022, Moscatelli and Mari-
nari 2024). Such a guide could serve as an ed-
ucational tool, starting from primary school but
extending to all generations and education lev-
els. To maximize its impact, it should incorporate
concrete and relatable examples that resonate
with diverse audiences. Additionally, engaging
citizens in science-based activities can enhance
recognition of the true scale of the issue and
foster broader societal awareness.

Beyond traditional educational methods,
innovative communication strategies are need-
ed to build a shared understanding of soil chal-
lenges. Moscatelli and Marinari 2024 emphasize
the importance of soil security (Montanarella
and Panagos 2021) and propose using alter-
native communication tools beyond scientific
language. They highlight the growing role of art
in the era of image-based communication as a
means to promote a widespread “soil culture.”
In addressing knowledge gaps, Thorsge et al.
(2023) analyzed the perceptions of over 1,000
individuals and review more than 1,800 docu-
ments from the European Joint Program on Agri-
cultural Soils. Their findings suggest that closing
these gaps requires a multifaceted approach, in-
cluding (1) raising awareness, (2) strengthening
knowledge brokers, (3) ensuring research activ-
ities and resources are relevant to land users,
(4) fostering peer-to-peer communication, (5)
delivering targeted advice and information, (6)
improving knowledge accessibility, and (7) pro-
viding incentives.

By integrating these strategies — edu-
cation, innovative communication, and knowl-
edge-sharing mechanisms — society can devel-
op a more informed and proactive approach to
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soil management, ensuring the protection of this
vital resource for future generations.

» Setting benchmarks for soil health

One approach to improving soil health gov-
ernance involves setting benchmarks that es-
tablish clear objectives and indicators across
various policy instruments (Schram et al. 2024).
This method aims to create a unified framework
for addressing soil health across multiple sec-
tors, ensuring consistency and coherence in pol-
icy development and implementation.

A key aspect of this approach is providing
land managers with benchmarking tools that,
where needed, can enhance their knowledge of
the often-unseen processes and properties that
contribute to soil health. These tools can support
informed management decisions across differ-
ent land uses (Feeney et al. 2023; Jenkins 2006;
Lobry de Bruyn 2019). However, for these tools
to be effective, they must be practical, require
little effort, and be capable of delivering time-
ly and accurate information. Developing such
benchmarking systems is a complex challenge,
as they must also account for regional variations
and changes over time (Feeney et al. 2023).

In reaction to Feeney et al.'s (2023) propos-
al for soil health benchmarks in managed and
semi-natural landscapes, Hollis et al. 2025 high-
light the complexity of this task. They emphasize
the need for close collaboration between institu-
tions responsible for collecting and maintaining
national soil data. Robust benchmarks require
coordinated efforts to ensure they effectively
inform discussions on soil health indicators and
policy pathways. If designed well, these bench-
marks could help reduce policy conflicts and
support the development of cohesive strategies
for soil health management.

« Scientific evidence of potential benefits
and context-specific trade-offs of Na-
ture-based solutions and other approaches

This knowledge gap is linked to the most
important knowledge gap described before.
There are increasing efforts to resolve prob-
lems of soil erosion and soil health caused by
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human activities. In farming for instance, NbS
and regenerative agriculture techniques are
being promoted and implemented in many ar-
eas. However, research evidence to support a
deeper understanding of the potential benefits
and to identify context-specific trade-offs has
not kept pace. A meta-analysis on Mediterra-
nean agroecosystems (Rodrigues et al. 2024)
shows that NbS can enhance soil health and
water quality, with afforestation significantly
increasing soil organic carbon and conserva-
tion tillage noticeably reducing soil erosion.
A qualitative understanding of the trade-offs
and benefits, considering the broader, evolv-
ing context of environmental, social, and eco-
nomic decision-making is urgently needed. In
this line of thought, there is a gap in develop-
ing tools that seamlessly integrate the afore-
mentioned soil erosion risk maps and potential
mitigation, or restoration solutions combined
with economic and ecological effectiveness
analyses. Cerda et al. (2022) determined a re-
duction in soil erosion in the plot where catch
crops were applied between the rows of cit-
rus orchards, from 3.9 to 0.04 Mg ha™ h 7).
However, to be viable, farmers considered that
this nature-based alternative had to be sub-
sidized by a minimum amount of €131.17 ha™.
Soil bioengineering techniques have also prov-
en effective in slope and riverbank stabilization
(e.g., Tisserant et al. 2021; Batista et al. 2024),
and consequently in reducing soil erosion, with
clear benefits for biodiversity (Cavaillé et al.
2015; Tisserant et al. 2021). However, its ap-
plication is slow to become widespread due
to a lack of qualified technicians, more evi-
dence on its effectiveness in other contexts,
and robust cost-benefit analyses (Bariteau et
al. 2013; Pinto et al. 2016; Moreau et al. 2022),
despite the most recent developments made in
the ECOMED project financed under the ERAS-
MUS+ programme.

 Soil erosion rates inclusive of erosion pro-
cesses at various scales

The evaluation of soil erosion rates should
broaden its scope to encompass a spectrum of
erosion processes at various scales — from local
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to global (Marzaioli et al. 2010). These include
rain splash, laminar, rill and gully erosion, sub-
surface erosion (such as piping and tunnelling,
Boulet et al. 2015), wind and/or riverbank ero-
sion (Prats et al. 2019). Soil erosion rates can
vary by an order of magnitude depending on
the spatial scale of the measurement (water-
shed<hillslopes<plot<point scale) and on the
methodology employed (e.g., erosion pins,
runoff tanks, sediment fences) (de Vente et al.
2013; Wagenbrenner and Robichaud 2014; Prats
et al. 2016). The high variability in soil erosion
upscaling stems from soil management, and
also from methodological constraints - certain
techniques can only detect erosion at specific
scales (Prats et al. 2014) - creating substantial
challenges for cross-contextual model calibra-
tion across different landscape contexts (Faria
et al. 2025). A multi-scale approach that com-
bines field-scale erosion data with high-res-
olution techniques (e.g., close-range photo-
grammetry) can enhance our understanding of
sediment connectivity across different scales
(Nicosia et al. 2024). Some human interven-
tions are known to increase soil erosion, such
as erosion induced by tillage, vegetation re-
moval with herbicide, levelling, soil quarrying,
termite mound removal, co-extraction on root
crops or timber and explosion cratering (Borrelli
et al. 2021; Rodriguez Sousa et al. 2023). There
is still lack of information on the key factors
that may trigger soil erosion in each specific
field condition, such as the increase in exposed
bare soil but also the increase in soil compac-
tion or a combination of both (Prats et al. 2019).
Additionally, the variability of factors such as
slope gradient and aspect, rainfall and wind in-
tensity, soil type, management practices, and
natural events have been individually associ-
ated with triggering soil erosion (Poesen et al.
2003; Vieira et al. 2018; Ni et al. 2024). Howev-
er, the interaction of these factors across spa-
tial and temporal scales remains poorly com-
prehended (Boix-Fayos et al. 2006; Keesstra et
al. 2018b). Understanding of the interactions
of socio-economic and cultural drivers, includ-
ing policy drivers, leading to tipping points for
erosion processes within each scenario is also
lacking (Wynants et al. 2019).
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Overview

Overview table

Table 2: The total number of knowledge gaps
identified and details about each one (see Suppl.
material 1).
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1. Introduction

Soil is healthy when it is in good chemical, biolog-
ical and physical condition and can continuous-
ly provide as many ecosystem services (such as
safe, nutritious and sufficient food, biomass, clean
water, nutrients cycling, carbon storage and a hab-
itat for biodiversity) as possible (European Environ-
ment Agency 2023). Soil structure contributes to
all soil functions that underpin ecosystem services
(Fig. 1). Water regulation, purification, and habi-
tat provision are crucial for maintaining nutrient
cycling, as well as disease and pest suppression,
which in turn support soil productivity and its role
in climate regulation (Schulte et al. 2014). There-
fore, disturbances to natural soil structure impact
ecosystem functioning. However, the relative im-
portance of these different ecosystem services
provided by soil structure in different pedoclimat-
ic zones, soil types and land-use types may vary.
Also, the info on the importance of protecting soil
structure and on the best management practices
needs to reach the diverse group of relevant actors
from land owners to decision makers.

Soil structure really makes soil what it is and
is vital for functioning of soil. Soil can exhibit a sin-
gle-grained structure in which separate mineral
particles are not aggregated but are only loosely
packed like in sand dunes. Soils can also exhib-
it massive structural condition in which separate
soil particles are bound together by cohesive forc-
es. Massive structure can be found deep in soil
profiles in a fine textured soil. However, in most
soils, there is some type of aggregation where
mineral particles are forming clusters as a result
of drying and wetting cycles, chemical ponding
and biological activity. The aggregate structure
promotes soil health by allowing water infiltration,
aeration, root growth, and nutrient cycling as well
as by providing niches for various soil organisms.
In organic soils, that are formed through the accu-
mulation of partially decomposed plant biomass
in fens and bogs, the structure is defined by the
peatland vegetation and the degree of the de-
composition (Rezanezhad et al. 2016).

Soil structure has been defined as the “spatial
arrangement of solids and pores at scales smaller
than the soil horizon and consists of clusters of sol-
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ids and pores called aggregates, that have hierar-
chical, emergent properties, and memory that de-
fine their functions” (Yudina and Kuzyakov 2023).
Some of the pores should also be continuous and
large enough enable preferential flows and rapid
infiltration. The arrangement of the particles, ag-
gregates, and voids determine the capacity of soil
to transmit solutes (water and nutrients) and gas-
es (oxygen, carbon dioxode, methane, hydrogen)
through the soil volume, and to retain and provide
water substances such as nutrients to plants and
soil biota. Important is also the significance of ag-
gregate size variation in soil formation and its rela-
tionship with microbial communities and soil func-
tionality like water and gas flows for rooting. See
vocabulary for soil structure in Table 1.

Good soil structure helps to resist soil ero-
sion and compaction, which can degrade soil
quality (Rabot et al. 2018) (Fig. 1). Thus, the struc-
tural quality of soils can be defined according to
their resilience to climatic disturbances, such as

@ O o SOILSFOREUROPE

SOLO Soil
e @ O structure

varying weather conditions, field traffic/forest
machinery and/or management practices such
as tillage. European Environment Agency (2023)
has listed soil processes than can potentially
weaken the soil status. Soil compaction and ero-
sion are indicated as important processes that
weaken soil quality, and they are tightly linked to
soil structure. While human interventions like ar-
tificial drainage can enhance biomass production
in wet conditions, practices such as intensive till-
age and the use of heavy machinery can destroy
soil aggregate structure and cause compaction,
compromising the soil’'s ability to store and purify
water. A good soil structure is an optimal balance
between water retention and hydraulic conduc-
tivity and to gas exchange in soil.

Soil erosion and, elemental leaching, as well
as resilience to drought periods, are linked to soil
structure determining e.g. soil moisture condi-
tions (Luk 1985, Dorman et al. 2015, Wei et al.
2007). Knowledge of the soil structure is in key

A beneficial soil structure (left) supports multiple
soil functions that underpin essential ecosystem
services for human society, including:

Water infiltration

Water retention

Water purification

Water provision

Habitat provision for soil organisms and
Plant roots

Carbon sequestration, and
Evapotranspiration

© N O g b WN =

Soil with poor structure (right) is prone to:

1 Surface runoff as infiltration is hindered by
compaction and poor surface structure

2 Water not percolating through the soil profile will
not get purified resulting in e.g. nutrient losses

3 The capacity of soil to store water and

4 Provide habitat for soil organisms and plant
roots is diminished, resulting in poor plant
growth and therefore

5 Reduced carbon sequestration

Figure 1. A beneficial soil structure (left) supports multiple soil functions that underpin essential ecosystem services for
human society. The problems that are occurring within the EU and globally are illustrated on the right-hand side.
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Table 1. Vocabulary related to soil structure.

Term Explanation

Water retention

SOM

Soil structure
Pore space
Pore size
Pore space

Wilting point

Soil’s ability to store water. With a smaller suction (<100 kPa) the amount of water retained depends mainly on the capillary effect and pro-
size distrubution, with larger suctions mainly on the soil texture and specific surface of the soil

Soil organic matter, soil solids that consists of plant or animal tissue in various stages decomposition

Spatial arrangement of solids (clay, silt and sand sized particles) and pores in a volume of soil

Volume of the space between the solid particles in the soil

Size of a pore described usually by the diameter

Continuity of pores (% of total porosity V/V) - essential for saturated hydraulic conductivity to ensure infiltration under flooded conditions

The minimum amount of water in the soil that the plant requires not to wilt. Below the wilting point, water is held so tightly in the soil matrix

that it cannot be taken by the plants
Field capacity
Particle size distribution | Shares of different sized particles in a mass of soil
Bulk density

Macro pores
pore shape - look above)

Micropores
Organic soil
Mineral soil

Growth factor

role when estimating soils’ ability to store and
conduct water as well as their water infiltration
capacity (Burger and Kelting 1999, Schoenholtz
et al. 2000Drobnik et al. 2018). Water retention
is responsible for life on Earth as we know it. It
allows for a huge air-water interface which per-
mits aquatic aerobic activity to proceed under a
range of environmental conditions.

Soil structure and related moisture condi-
tions control biogeochemical processes essen-
tial e.g. to timber (Henttonen et al. 2014) and
food productivity. Optimal soil structure supports
primary production through water retention and
habitat provision for biota that contributes to nu-
trient cycling, and pest and disease control.

2. State-of-the-Art

2.1. Current state of the
knowledge on Soil Structure

Soil structure dictates the hydraulic properties
of soil and is dependent on the soil properties
such as organic matter content, texture includ-
ing clay minerals or stones, and compactness of
the particle arrangements. Bulk density is often
seen as a indicator of the soil structure, but it

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

The amount of water retained in the soil after excess water has drained due to gravity

Measure of the mass of soil in a given volume, often expressed in grams per cubic centimerer (g/cm3)

Macropores are large soil pores, typically @ greater than 30um, which allow for the rapid movement of water and air through the soi. (incl.

Small soil pores, typically @ smaller than 30um, water moves mainly by diffusion and by plant uptake
Soil formed through the accumulation of partially decomposed organic biomass (Metsdmaa- Forest soils Glossary 2024)
Inorganic soil, loose inorganic matter formed from the bedrock as a result of geological processes

Any internal or external element that influences the growth, development, or reproduction of a plant

is texture depended and does not indicate the
pore size distribution (Wosten et al. 2001, Van
Looy et al. 2017, Launiainen et al. 2022). Water
retention characteristics (WRC) and hydraulic
conductivity can be determined by direct in-situ
or laboratory measurements or estimated using
pedo-transfer functions (PTFs) based on the soil
data (Wosten et al. 2001, Van Looy et al. 2017).
Important parameters to be measured for soils
from the point of view of soil hydraulic properties
are e.g. total porosity (TP) and the water con-
tent of the soil at field capacity (FC) which is the
amount of water stored in soil against drainage
(Cools and Vos 2020, Launiainen et al. 2022). For
plant available water, the wilting point (WP) is a
crucial parameter especially in dry conditions
(Cools and Vos 2020, Launiainen et al. 2022).
The available water capacity (AWC) is the plant
available water between FC and WP (Launiainen
et al. 2022). Knowledge about these parameters
forms a basis for estimating the effect of soil
structure on soil hydrological conditions.

In many cases there are knowledge gaps in
data on water retention characteristics (WRC) of
soils (Launiainen et al. 2022). According to Lau-
niainen et al. (Launiainen et al. (2022) hydrolog-
ical, biogeochemical and forest models require
data on WRC to perform improved hydrological
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predictions for forest soils. Similarly, understand-
ing a soil's susceptibility to compaction and to
characterize soil mechanical properties as a func-
tion of soil moisture requires more data of the
compressive behavior of the different soil types in
different moisture conditions (Torres et al. 2024).

Intensification of land management, especial-
ly soil tillage, is a key driver of soil structural de-
terioration (Keller et al. 2019, Kloffel et al. 2024).
Increasing weight of the machinery used in agri-
culture and in forestry poses a threat to soil pore
system through compaction causing changes in
pore volume, pore-size distribution, and connec-
tivity. In addition, heavy machinery can compact
deep soil layers and then recovery can take lon-
ger than compaction in surface layers (Berisso et
al. 2012). From a biological perspective, the pore
network is highly pertinent as it is the habitable
space for microbial species and compaction af-
fects directly to the habitat of soil biota (Longe-
pierre et al. 2021). Report of the Finnish Ministry
of Environment (Haavisto 2023) indicated also that
soil compaction was one of the most important
processes that can weaken soil status. However, in
Finland, while there are individual scientific stud-
ies on soil compaction in agricultural, forest, and
urban soils, large-scale monitoring at the mapping
level is lacking. This means that there are knowl-
edge gaps in soil compaction information at na-
tion-wide level (Haavisto 2023). This is probably
the case also in many other countries.

Mechanisation of agriculture has enabled
intensive tillage which is related to reduced ag-
gregate stability and increased risk for surface
sealing and erosion (Bronick and Lal 2005). These
management-induced changes in soil pore sys-
tem affect water and gas movement in soil (e.g.
Strémgren et al. 2016) and therefore, also the living
environment of soil biota and plant roots (Oades
1993). When changes in aggregate stability and
pore system lead to reduced soil productivity, soil
biodiversity, the input of carbon (C) through de-
caying plant materials as well as exudates and de-
bris of soil biota (Costa et al. 2018) as well as soil
necromass is also reduced leading to decreasing
organic carbon (OC) content in soil. Lower SOC
content is related to lower aggregate stability (Six
et al. 2000, Soinne et al. 2016) thus enhancing fur-
ther the risk for structural deterioration.
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The growing interest on reduced tillage and
carbon farming have potential to improve aggre-
gate structure but improving the growth condi-
tions of roots and enabling proper water and gas
movement deeper in the soil would require loos-
ening the soil structure at least down to the de-
sired root penetration depth. No-till management
known to improve soil aggregate stability may,
depending on climate and soi type, enhance soll
compaction and therefore slowly lead to low-
er productivity. On the other hand, reduced dis-
turbance of soil improves the living conditions of
soil organ isms and therefore may have positive
effect on soil porosity and macroporosity.

Similarly, as in agriculture, forest manage-
ment practices (timber extraction, land prepara-
tion by terraces, and so on) affect soil structural
properties. Different management practices also
bring along forest floor vegetation changes me-
diating the effects of drought on soil. One ex-
ample are the forest fires in Portugal which are
a major threat affecting soil structure, soil biota,
soil physicochemical properties with also off-site
effects (flooding, ash deposition in damns, etc.).

In addition to soil management, climate
change puts the soil structure on stress through
extreme weather conditions. Extreme rain events
lead also to changes in pore structure which
maintains the healthy soil. Drought can cause
irreversible or reversible shrinkage of soil lead-
ing to preferential flow paths for water solutions.
Drought has also been shown to decrease car-
bon accumulation to soils and the forest stand
age and management can affect the resilience
and response of soil to drought and heat waves.
We do not know what happens to soil structure
when these extreme weather events follow each
other repeatedly. There should be critical anal-
ysis of some emergency measures currently
adopted in the post-forest fire phase, such as
emergency stabilization or aerial seeding. The
advancing climate change can lead to continu-
ous change in soil structure, and we need more
information on ecosystems that undergo change
such as thawing permafrost.

While we can destroy soil structure with, for
example intensive and wrongly- timed soil tillage
and forest management practices and excessive
handling of soil (Fig. 2), but we can also preserve
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Insufficient or outdated

L fitabilit i ’
e, artificial drainage system

Poor
drainage

Larger farms with
larger field area

Timing of field work not optimal for
soil structure maintenance

Climate Change

Deterioration
of soil structure

N

Reduced water
retention
capacity

Reduced pore
space

Reduced
infiltration

Increased runoff
and erosion

Reduced
aggregate stability

Reduced plant
available water

Reduced
productivity
and organic
matter input

to soil

Reduced
biological activity

Loss of soil
organic matter

Increased temperature and

Extreme weather events

Figure 2. Drivers (black borders) affecting structure of agricultural soils include factors such as overall policies and eco-
nomic situation (orange), soil management practices (yellow), and environmental factors (blue). Structural deterioration
can impair soil functioning and create a vicious cycle of further soil weakening.

soil structure. Regenerative agriculture practic-
es (e.g holistic grazing, catch crop, cover crop
and crop rotation among others) provide an op-
tion for the intensive management practices. But
can we improve/regenerate destroyed structure
of arable mineral soil? Or will the structure and
functioning of restored peat soil be equivalent to
the unmanaged peat areas?

2.2 Prioritization of
knowledge gaps

Methodology

The methodology used followed the SOLO Think
Thank methods and is described in Fig. 3. We
started with desk research by Think Thank lead-
ers and members and continuedwith stakeholders
through multiple approaches. Prioritisation of the
10 key knowledge gaps took place in an online
meeting with stakeholders and scientist and in Bul-
garia by key stakeholders. Voting was conducted
in Bulgaria, online and for soil structure Think Tank
we organized a separate voting during the Finnish
Soil Sciences days. Each stakeholder could vote

SOLO Outlook 2025
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for the three most important knowledge gap or re-
quest some of them to be combined. Intriguingly,
in the online meeting and during the Soil Sciences
days, the same top three were formed.

A list of the top 10 identified knowledge
gaps can be found in Table 2.

3. Roadmap for Soil
Structure

3.1 Key knowledge gaps

1. How can we manage and adapt soil structure
to support effective water regulation and hab-
itat provision across scales—from microhabi-
tats to catchment areas—in the face of climate
change and evolving land-use practices?

The change in management or caused by natural
disturbances may lead to new structural state in
soil or the change may be short-lived and there
will be a reversion to the pre-disturbance state.
The consequences of these changes in land
management or changes resulting from natural
disturbances, and the rates of these changes
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Table 2. Ranking of the top 10 knowledge gaps identified (a full list of all identified knowledge gaps is given in section 3.3).

Rank Knowledge gap Type of knowledge gap

1 How can we manage and adapt soil structure to support effective water regulation and habitat provision across
scales - from microhabitats to catchment areas - in the face of climate change and evolving lang-use practices?

2 How can we quantify and value soil structure to support sustainable land management, economic assessments,

and predictive modeling across scales and applications?

3 How do biological, physical, and chemical factors in soil interact to build and maintain its structure, and how
can management practices harness these interactions to enhance soil structural resilience or restore it after

deterioration?

4 How do forest management (timber extraction, soil preparation) and other disturbances (forest fires) effect soil

structure and what are the off-site effects (e.g. flooding)?

5 Impact of circular economy and soil improvement materials in maintaining or improving soil structure in changing

environment

6 How is a changing climate and operational/business environment challenging current management practices,
and what impact will it have on soil structure if these practices are maintained or adjusted to the changing

environment?

7 How can weto increase the interest towards soil structure and knowledge on the role of soil structure (especially

Knowledge development gap, Knowledge
application gap

Knowledge development gap

Knowlegde development gap, Knowledge
application gap

Knowledge development gap

Knowledge development gap

Knowledge development gap, Knowledge
application gap

Knowledge application gap

sub soil) on water management among the lang- managers? How can weto help farmers and land managers to

avoid management-induced soil structure?

8 How much the soil has compacted is the soil, and can the soil recover from compaction? Soil sealing and the effect | Knowledge development gap

on soil structure, can the soil recover from sealing?

9 Supply chain pressure: How do weto get better contracts for the farmers so that the contracts don’t put themyou

in field at the wrong time?

10 | Does soil classification based on soil texture lose the information needed for soil structure management?

may differ depending on climate, soil type a nd
vegetation cover, management, and disturbance
history. For example, the use of heavy machinery
may lead to soil compaction affecting soil func-
tions like water flow, regulation and retention,
soil aeration, habitat provision and therefore
ability of soil to provide ecosystem services such
as primary production. Compaction and reduced
plant growth can lead to increased runoff of nu-
trients and carbon, and reduced drought toler-
ance. Compaction may cause problems for soil
organisms and their function (Meurer et al. 2020)
decreasing their biological activity and leading to
lower decomposition of soil organic matter and
disturbing the maintenance of soil structure due
to reduction of exopolysaccharides, glomalin
and fungal hyphae. Therefore, more information
is needed on specific management practices in
different climatic environments and soil types
that consider the land-use and functioning of
the soil for provision of as many as possible eco-
system services.

Changing intensity of weather events re-
sulting from climate change can cause prob-
lematic soil structural changes that need to
be examined more. With changes in weather
events and in annual timing of them, there is a
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Knowledge application gap

Knowledge development gap

transition in timing of the soil management prac-
tices at both forest soils, agricultural soils and
in the urban areas. When the soil is too moist,
certain machinery cannot be used without caus-
ing dramatic effects to the soil structure. Proper
winter in Northern Europe with frost period pro-
tects soils from damage and allows use of heavy
machinery (e.g. in forests). In addition, frost and
freeze-thaw cycles are reported to improve soil
structure in arable lands by fragmenting large
soil clods and therefore enhancing consolida-
tion of beneficial seedbed (Leuther and Schliter
2021). However, the reported effects of multi-
ple freeze-thaw cycles on aggregate stability
vary, with studies reporting both increased and
decreased aggregate stability (Lehrsch 1998,
Kvaerng and @ygarden 2006, LI and FAN 2014,
Wang et al. 2012). Unfortunately, currently cli-
mate change appears as milder temperature and
increased precipitation in winter period, leading
to greater moisture content and leaching of min-
eral and organic material from the soils (greater
erosion) (Kvaerng and @ygarden 2006). In addi-
tion, the possibility for increased leaching is not
restricted only to mineral and organic matter
but may concern also particulate material (sus-
pended solids) as well as nutrients essential for
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e.g. forest ecosystems in the long run (Macha-
do et al. 2018). Increased occurrence of heavy
rain is possible also in more Southern regions,
and thereby the concern of the loss of soil or-
ganic matter and soil structural changes is glob-
al. Abnormal weather events make trees sus-
ceptible to forest diseases, and in turn, loss of
trees alters soil stability. The impact of extreme
weather events on soil structure can vary by soil
type, potentially leading to either improvement
or degradation. It is essential to develop man-
agement strategies that account for both ex-
treme rainfall and extreme drought. This could
include novel thinking in crop rotations and
plant breeding to enhance possibilities for green
plant cover throughout the year.

Soil operations affect the soil structure, but
with optimal timing the destabilising effect can
be reduced. For example, soil wetness and in-
herent soil properties contribute to soil structural
vulnerability and their interaction is complicated
depending also on the management practices
(Hu et al. 2023). Also grazing and compaction
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by animals can be severe (Pietola et al. 2005).
Minimum tillage has been considered the best
approach from numerous biological points of
views such as symbiotic fungi and arthropods,
although this might not necessarily be the case
with increasing number of weeds and reduction
in yield levels. Furthermore, omitting tillage have
been reported to result in enrichment of nutri-
ents like phosphorus in the uppermost surface
layer (Jarvie et al. 2017, Uusitalo et al. 2018). This
will lead to increased risk of loss of dissolved
phosphorus into surface water increasing eutro-
phication (Jarvie et al. 2017, Uusitalo et al. 2018).
Additionally, if soil water management like drain-
age is not functioning properly in clay soils, the
aggregates loose stability under water saturat-
ed conditions. Therefore, we need information
on soil specific management options in different
climatic conditions and land- use systems to im-
prove the functionality of soil structure.

On forest land there is a growing interest
among landowners towards continuous cover
forestry, where one avoids clear-cuts, or site
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preparations for the planted trees are targeted
for one seedling separately to avoid overall soil
tillage. If continuous cover forestry practices get
more common in organic soils where it is more
applicable than in mineral soils, and this may re-
sult in a significant change by reducing the need
for soil preparation and for maintenance ditches
on drained peatlands. Different harvesting prac-
tices may also have a variable effect on the for-
est soil structure and nutrient amounts remaining
in the site after cuttings. If cutting includes all
tree compartments (whole tree harvesting), this
increases the loss of organic matter and nutri-
ents compared to that remaining in the soil in
stem-only harvesting. The distribution of log-
ging residue piles on the site may also affect soil
structure (physical properties) and nutrition (or-
ganic matter, chemical properties), i.e. if the log-
ging residues are located only on restricted parts
in the harvested area due to modern harvesting
techniques. In addition to physical soil manage-
ment, human induced land use also includes
change in plant species, particularly in agricul-
ture but to certain extent also in forest systems.
The narrowing of plant species selection has
further extended to genetic diversity via the use
of breeding of plant material often to maximize
productivity. Plant breeding has changed root
exudates, root microbes, soil chemistry via mi-
crobes, lack of arbuscular mycorrhiza, glomalins
and other extracellular polymeric substances
(EPS) thus affecting the soil structure.

The emerging issue of microplastics in Eu-
ropean soils is conceptually also a physical con-
taminant and affects soil aggregation and pore-
size distribution (Han et al. 2024, Wang et al.
2023). However, the impact is likely to fluctuate
based on the textural composition of the soil, as
well as the size, shape, and aging characteris-
tics of the microplastics particles (Lehmann et al.
2021, Wang et al. 2022).

The improvement of soil structural quality
resulting from changes in soil management can
be assessed by physical-structural-hydrolog-
ical parameters (aggregate stability, MWD, pF-
curves, bulk density, Ksat values) and methods
linked to soil microbiology. A particular challenge
is that, in many cases, soil in poor condition is
not very responsive to management practices.
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2. How can we quantify and value soil structure
to support sustainable land management, eco-
nomic assessments, and predictive modeling
across scales and applications?

Good soil structure is characteriszed by an ar-
rangement of particles that facilitates the move-
ment of water and air, while also providing sta-
bility to resist erosion and compaction. However,
soil pore space (total pore volume and pore size
distribution) varies greatly depending on soil
particle size distribution and thus, the optimal
structure or pore-size distribution that can be
obtained or maintained varies depending on soil
type. Also, land-use and location of the soil sets
different expectations for soil structural func-
tioning. In a cool humid climate, it is essential
to get the excess water drained from the fields
in the spring to get the growing season started
whereas in the catchment scale, it is important to
maintain areas that can hold the draining water
to level of the flood peaks. Therefore, the evalu-
ation of the goodness of soil structure should be
done considering the ecosystem services that
are expected the soil to produce within the land-
use and the capacity of the specific soil type.
Soil aggregates are considered for hot
spots for biological activity and biogeochem-
ical processes and are of high importance de-
fining soil structure and pore space. However,
the efficacy of aggregate research in elucidat-
ing functioning of soil structure has come under
scrutiny. Sampling aggregates has required dis-
rupting the surrounding soil environment, raising
concerns that aggregates may partially result
from the sampling procedure, thus potentially
compromising their representativeness (Young
et al. 2001, Garland et al. 2023). Furthermore,
non-destructive imaging techniques have failed
to detect aggregates in undisturbed soils or in
deeper soil layers (Garland et al. 2023). Recently,
Garland et al. (2023) concluded that aggregates
can be separate units but taking into account
the processes contributing to the formation and
turnover of aggregates, they do not need to have
distinct physical boundaries. | n fact, tillage- pro-
duced aggregates are often loosely packed and
form inter-fragment spaces whereas natural ag-
gregates are more likely to be seamlessly em-

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Jenni Hultman et al.: Outlook on the knowledge gaps to improve soil structure

bedded in the surrounding soil matrix (Or et al.
2021). Yudina and Kuzyakov (2023) stated that
they “consider the pores and the interfaces as
the arena of the physico-chemical and biological
processes, but aggregates as the result of these
processes”. Consequently, aggregates are the
core concept of stable pedogenic features (soil
memory) and allow the realization of a thermo-
dynamic view on the soil structure. This further
highlights the importance of understanding ag-
gregation and developing methods to study ag-
gregates in their functional surrounding.

How to measure soil structural functioning
at relevant scales? Assessing the soil structure
holds a great variety of analysis methods. Soil
compaction can be for example estimated by de-
termining precompression stress, penetration re-
sistance, soil organic matter as well as hydraulic
conductivity and plant available water capacity
(European Environment Agency 2023). Differ-
ent methods emphasize different aspects of soil
structure, and some may be suitable for only cer-
tain kind of soils. Some methods are cheap and
widely applicable in context with the field sam-
pling and utili szed for example in the current Eu-
ropean-wide field studies and surveys, but less
informative and difficult to be interpreted. For ex-
ample, soil bulk density (BD) is widely measured
property used to describe soil structure. Howev-
er, interpreting BD results from soils with various
mineral composition of particle size distribution is
difficult. Furthermore, BD is a static measure lack-
ing the link to soil functioning and information for
example on pore connectivity. On the other hand,
certain newer methods, such as X-ray computed
tomography (CT), allows visualization and quan-
titative analysis of the interior of porous struc-
tures (Haubitz et al. 1988) and provide in depth
information e.g. on soil pore connectivity through
guantitative image analysis tools (Koestel 2017),
but are expensive and need rare equipment.

Further, soil structure contributes to ecosys-
tem services in different scales (micron, pedon,
catchment), and upscaling the information from
small sized samples (@ 5 - 10 cm) is challenging
taking into account the large heterogeneity of soil
structure in space (Vereecken et al. 2019). On the
other hand, collection of large number of samples
would not be feasible. So far, a satisfactory way to
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measure soil structure non-invasively and at rel-
evant field scales has not been available (Rome-
ro-Ruiz et al. 2018). Therefore, effort is needed
to make best out of new and rapidly developing
technologies (e.g., satellite data, Al, digitalization,
imaging, etc.) to combine soil structure related
measurements at different levels. Combination of
new technologies such as nanoscale geophysics,
tomography, spectrometry, or single cell genom-
ics (Hartmann and Six 2022, Romero-Ruiz et al.
2018) to Sentinel or other satellite derived data
are probably needed to bridge the still existing
knowledge gaps between soil management and
structural features such as pore structure, con-
nectivity, and soil functioning. Furthermore, it is
crucial to develop methods for continuous mea-
surements that capture the short-term changes
in soil when not at equilibrium state (in contrast to
current laboratory measurements).

Soil structural characteristics are current-
ly not properly accounted in global hydrological
and climatic models largely due to the method-
ological constrains (Launiainen et al. 2022, Ver-
eecken et al. 2022), although recent efforts in
model development have been promising (Jarvis
et al. 2024). Efforts put on developing methods
for measuring functioning of soil structure in dif-
ferent scales support the large scale hydrolog-
ical and hydromechanical modeling (Fatichi et
al. 2020). Better hydrological models will help to
estimate the impact of structural quality on soil
functioning and in ecosystem service provision
considering the changes in agricultural man-
agement and climate in the future (Jarvis et al.
2024). This can help in estimating the economic
value of the properly functioning soil structure
and therefore provide motivation and resources
to enhance soil structure improvements.

3. How do biological, physical, and chemical
factors in soil interact to build and maintain its
structure, and how can management practices
harness these interactions to enhance soil struc-
tural resilience or restore it after deterioration?

Soil microorganisms play a key role in the forma-
tion of soil structure and its dynamics. In addition
to bacteria and soil microfauna, particularly fungi
are shown to be involved in the formation and
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stabilization of soil aggregates, also at the mac-
roaggregate scale (Lehmann et al. 2020). Soil
aggregating capability of fungi is hypothesized
to be due to their physical, morphological, chem-
ical and biotic traits. Fungal diversity in soils is
high, and also large differences among fungal
species are found in their ability to aggregate
soil (Lehmann et al. 2020). Furthermore, recent
experiments indicate that by fungal inoculation,
soil hydraulic properties and aggregation can be
improved by connecting soil particles via hyphae
and modifying soil aggregate sorptivity (Angulo
et al. 2024). The effect varied according to the
fungal strains and soil moisture levels.

Soil aggregate stability is often used as an
indicator of soil structure (Six et al. 2000) and
reflects soil's ability to stand erosive forces. Soil
aggregates are associates of organo- mineral
particles bound together with forces that are
stronger than the forces between adjacent soil
aggregates; biologically synthesised extracellu-
lar polymeric substances (EPS). EPS are com-
posed mainly of polysaccharides, proteins and
DNA excreted by soil microorganisms. EPSxtra-
cellular polymeric substances are also respon-
sible for the cohesion of microorganisms and
adhesion of biofilms to surfaces, they affect
soil spatial organization and enable interactions
among microorganisms (Costa et al. 2018). The
cementing agents that enhance aggregate for-
mation are well-known and natural aggregates
are formed as a result of biological activity re-
sulting in stabilization by biopolymers, and min-
eral particle enmeshing by hyphae and roots.
Small and fine roots produce optimal conditions
to form and to stabilisze aggregates due to the
polysaccharides produced by the microorgan-
isms (Hallett et al. 2022). Furthermore, the roots
maintain separation between the aggregates.

In agriculture, tillage produces soil frag-
ments similar to biologically formed aggregates,
but the stability of the fragments against me-
chanical disturbance and wetting is lower (Or
et al. 2021). More information is needed on how
these differently formed aggregates impact the
functioning of arable and natural soils and on
the relative importance of these different types
of aggregates in preserving soil organic carbon
stocks in different soil types and under different
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land-use and management. Small- sized aggre-
gates seem to improve soil hydrological proper-
ties like water retention capacity and infiltration,
so the estimation of this fraction or derived in-
dexes or ratios, which relate the percentage of
micro to macroaggregates, can give an interest-
ing information about the condition and degra-
dation of Mediterranean soils.

The fundamentally important interac-
tions between chemical and biological factors
in maintenance of soil structure provide a clear
potential introducing new possibilities for soil
management, also in the context of climate
change. We agree that the first step is to identi-
fy the most important key organisms supporting
soil structure. However, rather than direct cul-
tivation, understanding the ecology of the key
microorganisms would provide more efficient
long-lasting impact. Supporting ecosystem
of the key organisms, such as suitable carbon
support via host plant or interacting helper mi-
crobes would be way to soil structure improve-
ments via use of soil biota.

Indeed, biological processes influenc-
ing soil structure are not happening only mi-
crobial but rather in plant root-microbe inter-
phase. Roots and attached microbiota improve
nutrient cycling, stabilization of soil against
erosion, water balance of soils and even soil
carbon storages (Hallett et al. 2022) as well
as may mitigate soil compaction damages (Jin
et al. 2017). Abundant use of fertilizers de-
crease the benefit of root-soil interface in nu-
trient uptake, and modern crop cultivars may
have smaller root systems. These may lead to
lowered amount of rhizodeposition and even-
tually impact on soil properties. Plant breed-
ing is suggested to be a potential future tool
in harnessing the root-soil interphase to build
and preserve soil structure and sustainability
(Hallett et al. 2022). Another interesting sug-
gestion is that, as ethylene has been found to
act as an early warning signal for roots to avoid
compacted soils, this could provide a pathway
for how breeders might select crops resilient
to soil compaction Pandey et al. (2021).

We need information, not just on agricultural
soils, but on the physico-chemical processes, all
the biological processes and interactions, from
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larger plants and animals to fungal hyphae and
tiny microbes. How soil organisms interact with
each other and with the abiotic environment af-
fects soil structure. The role of soil invertebrates
in crop production has received relatively little
attention. The biotic part maintains the struc-
ture, how is it affected by climate change and
changes in the soil habitat? How do soil animals
and microbes respond to extreme events?

Recovery of soil after disturbances is
tightly linked to soil structure. We do not know
how long it takes for soil to recover nor how we
should measure soil recovery. The anthropo-
genic effects have a major role in shaping soil
structure, but we do not have a complete and
soil- and climate-specific understanding on
their direct impacts on soil structure and how
to retain sustainability of soil after disturbance.
The potentially important role of plants in res-
toration needs also more soil and management
specific understanding. Furthermore, as the
functioning of soil results from an interplay of
soil structure and activity of soil organisms, re-
covery of the vast areas of deteriorated soils
on earth is a challenge.

3.2 Prioritized knowledge
gaps

4. How does forest management (timber ex-
traction, soil preparation) and other distur-
bances (forest fires) affect soil structure and
what are the off-site effects (e.g. flooding)?

Timber extraction is performed in forests now-
adays often using machinery which may cause
in some cases soil compaction. After clearcut,
it is typical to perform soil preparation in or-
der to improve soil structure and properties
for tree growth of the next tree generation.
There is a need for more information on how
soil preparation actions affect soil structure
in a long run (e.g. SOC development, mineral
weathering) and nutrient leaching. Forest fires
impact soil organic matter, clay mineral struc-
ture, and can significantly alter the soil pore
system (Agbeshie et al. 2022), thereby affect-
ing overall soil functioning. Therefore, the risk
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and frequency of forest fire occurrence should
be assessed, and their potential impacts on
soil functioning carefully evaluated.

5. Impact of circular economy and soil improve-
ment materials in maintaining or improving soil
structure in changing environment

Agricultural use of organic amendments derived
from the pulp and paper industry have gen-
erally shown positive impacts on soil physical
properties such as soil aggregation. Sludge ad-
dition has also reduced particle and phosphorus
losses from soil to percolation water, indicating
potential for erosion mitigation (Rasa et al. 2020).
However, when enhancing circular economy, the
quality of the materials in question should be
carefully investigated in the light of soil func-
tioning since side streams may contain harmful
substances that impair for example soil structure
stability and functioning. Therefore, more infor-
mation is needed on the impacts of different side
streams on soil structure in different soil types
and climate conditions.

6. How is a changing climate and operational/
business environment challenging current man-
agement practices, and what impact will it have
on soil structure if these practices are main-
tained or adjusted to the changing environment?

Poor profitability of agriculture may impair the
investments needed for adjusting production to
maintain soil structure in changing climate. Fur-
thermore, changing diets change the crop rota-
tions and quality of organic matter input into the
soil. Also new crops may require new type of ma-
chinery which should be evaluated in the light of
changing climate.

7. How to increase the interest towards soil
structure and knowledge on the role of soil
structure (especially sub soil) on water man-
agement among the land- managers?

Among farmers, nutrient inputs have gained a
lot of attention, and this may originate from the
fertiliszer industry being a large business. How-
ever, soil structure is as important growth factor
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as poor structure may significantly prevent the
plants from utilizing the nutrient input given in
fertiliszers. Therefore, knowledge on soil struc-
ture and how to manage the structure of differ-
ent soil types is crucial information to improve
or maintain soil productivity as well as to reduce
environmental impacts of food production.

8. How much the soil has compacted and can
the soil recover from compaction? Soil sealing
and the effect on soil structure, can the soil re-
cover from sealing?

Plant roots are able to modify soil structure via nu-
merous mechanisms, for example pore formation
(Jin et al. 2017). Thus, when aiming to recover soils
after compaction, in addition to management, in-
crease in root growth may improve plant resource
accessibility, and thereby also crop productivity.
Increased root growth has also long-term effects
on compacted soil via organic matter feed. The
root penetrability and growth could be improved
through plant breeding (Colombi and Keller 2019,
Hallett et al. 2022). In forest soils, the key issue is
in avoiding compaction by operational planning of
forest management, such as which forest units to
be cut in which season and which machine resourc-
es to be used (Labelle et al. 2022). Operations eg.
usage of mulch to accelerate the recovery of soll
properties, or even mechanical site preparation,
could be used for loosening the topsoil.

9. Supply chain pressure: How to get better
contracts for the farmers so that the contracts
don’t put you in the field at the wrong time?

Farmers’' contracts with traders can be very bind-
ing and require delivery of products at the exact
time agreed. However, the ripening of the harvest
and the farming practices are highly dependent
on weather conditions. Excessively tight contracts
can force farmers to harvest under conditions
where soil strength is too low, for example, due to
excessive wetness. In this case, adherence to the
contract will lead to a deterioration of the soil struc-
ture and may risk future yields. On the other hand,
breach of contract often results in significant fi-
nancial losses for the farmer. Increasing awareness
and understanding of the importance of soil struc-
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ture for soil function and yield potential could help
to increase flexibility in contracts. Furthermore, the
flexibility of contracts between farmers and trad-
ers should be enhanced, especially for crops that
are more vulnerable to weather variability.

10. Does soil classification based on soil tex-
ture lose the information needed for soil struc-
ture management?

For agricultural purposes and within farmers and
advisory services, soils are often classified ac-
cording to their texture (particle-size distribution).
However, the proportion share of clay, silt and
sand does not reveal soil characteristics related to
parent material, climate, relief or resulting from the
age of the soil (soil forming factors). Classification
systems like World Reference Base which consider
the diagnostic characteristics and their relation-
ship with soil-forming processes can better reveal
conditions in soil related to soil wetness or proper-
ties originating from the quality of the parent ma-
terial (Gray et al. 2011). People responsible for soil
management decisions should be better informed
about the role of soil-forming and soil health re-
lated factors in shaping soil characteristics across
different climates and topographical locations.

3.3. Overview

An overview of the knowledge gaps can be found
under Suppl. material 1
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Introduction

This Think Tank (TT) focuses on Specific Objec-
tive 7 (SO7) of the European ‘EU Soil Mission: A
Soil Deal for Europe’ (hereafter Soil Mission), that
relates to reducing the EU global footprint on
soils. Within this specific Soil Mission objective,
two main targets are defined in the Soil Mission
Implementation Plan:

o T 7.1: Establish the EU’s global soil footprint
in line with international standards.

e T7.2: Theimpact of EU’s food, timber and bio-
mass imports on land degradation elsewhere

is significantly reduced without creating
trade-offs.

These objectives have to be in line with the
Zero Pollution Action Plan. This implies that air,
water and soil pollution will have to be reduced
to levels no longer considered harmful to health
and natural ecosystems, that respect the bound-
aries with which our planet can cope, there-
by creating a toxic-free environment, by 2050.
The main objective of this document is to high-
light actionable knowledge gaps and research
themes, that are critical to achieve to attain the
SO7 specific objectives.
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Background to the
international dimension (as
presented in the Soil Mission
Implementation Plan)

SO7 adds an international dimension to the EU
Soil Mission, which is, in its other objectives,
primarily focused on improving soil health
and soil functioning in the European Union.
As stated in the Mission Implementation Plan,
soil health is crucial for three UN conventions
(UNCBD, UNCCD, UNFCCC), as well as for the
Sustainable Development Goals (SDGs), and is
an issue of worldwide concern. To avoid nega-
tive impacts of EU actions on soils outside the
EU (mostly in terms of consumer demands),
the Soil Mission acknowledges the need for
global alignment of the soil health concept
and actions to reduce the soil footprint out-
side the EU from imports of food, biomass, and
timber. This focus on biomass has been ques-
tioned by multiple stakeholders, as highlighted
in the initial knowledge gaps. The Soil Mission
Implementation Plan emphasizes that the be-
yond-EU dimension can and should leverage
existing partnerships.

For Africa, the Food and Nutrition Security
and Sustainable Agriculture (FNSSA) partner-
ship, part of the African Union-European Union
High-Level Policy Dialogue (HLPD), is indicat-
ed as a potential starting point. It focuses on
soil health for sustainable food systems. The
related Horizon 2020 projects Soils4Africa and
LEAP4FNSSA have invested first efforts to im-
prove the quality and availability of African soil
data, to develop field survey protocols, and to
coordinate and support research and innova-
tion on sustainable agriculture. For the non-EU
countries around the Mediterranean, the PRIMA
Research and Innovation Programme addresses
water and agri-food systems in the Mediterra-
nean, in order to prevent further degradation
and restore damaged lands in the Southern
Mediterranean. It has funded a number of proj-
ects related to soil management.

In Latin America and the Caribbean, co-
operation is primarily aimed to be focused un-
der the EUCELAC Foundation, that emphasizes
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sustainable agriculture and bioeconomy re-
search in line with the EU’s Horizon Europe pro-
gram. Japan and Canada are also key partners.
Japan seeks to align its Moonshot program with
the EU’s Soil Mission, while Canada contributes
to designing living labs and R&l collaboration.
The Soil Mission also aims to support collabora-
tion with the FAQ, particularly its Global Soil Part-
nership, that aims for a harmonized framework
for soil data and contributes to the FAO’s Global
Soil Biodiversity Observatory and initiatives on
soil biodiversity conservation. Finally, the Im-
plementation Plan states that Member States’
involvement in the 4per1000 initiative, launched
at COP 21, established an International Research
Consortium (IRC) on soil and carbon to enhance
global R&I cooperation. This will be guided by the
activities of the ORCaSa Horizon Europe project
(“Operationalizing International Research Coop-
eration on Soil Carbon”), and the Global Research
Alliance on Agricultural Greenhouse Gases.

Importance

The issue of soil degradation is a major concern
in the Global South, affecting millions of individ-
uals who depend on agriculture for their live-
lihoods. According to FAO, one-third of global
agricultural land is experiencing human-caused
degradation, and the rate at which this is hap-
pening is accelerating due to population growth.
The areas that are most affected by soil erosion
and fertility loss are those that experience the
greatest decrease in yields due to climate ex-
tremes, the fastest increase in aridity, and have
the highest risk for food security. Stopping soil
degradation is therefore essential to achieve
the goal of zero hunger. The majority of the 1.3
to 3.2 billion people affected by this issue live
in poverty in developing countries. The role of
the EU in this global problem cannot be neglect-
ed (European Environment Agency (EEA) et al.
2020), especially in terms of biogeochemical
flows (nitrogen and phosphorus cycles), bio-
mass flows, soil health and land system change;
thisis crucial to avoid an ecological poverty trap,
where soil degradation could erode potential for
eradicating poverty (Wackernagel et al. 2021).

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Eric Struyf et al.: Outlook on the knowledge gaps the EU global footprint on soils

State of the Art

The broader state-of-the-art regarding Soil
Mission Objective 7 is challenging to assess.
As highlighted multiple times during the ongo-
ing development of this outlook document, no
existing study has comprehensively quantified
the detailed impact of EU activities on global
soil health and functions. Furthermore, there is
no clear consensus on which soil functions and
ecosystem services should be prioritized, or how
such a footprint can be achieved.

The Soil Mission recognizes that even at
the EU level, assessing the overall status of sail
health remains a significant challenge. At the EU
level, the combined LUCAS soil survey, soil mod-
ule and soil methodology provide harmonized
and statistically relevant data and protocols on
the monitoring and status of key aspects of sail
health (European Commission: Joint Research
Centre et al. 2021). Yet, unlike other resources
such as water, there is currently no legal require-
ment for EU member states to report on soilsin a
harmonized and standardized manner, although
discussions on the Soil Monitoring Law are con-
tinuing. This leads to inconsistent levels of soil
monitoring across the EU. Additionally, the EU
soil survey faces the challenge of adapting to
the evolving policy needs of both national and
EU policymakers. A significant difficulty is the
specific quantification of the human activity
footprint in the LUCAS dataset. This is testimony
to the formidable task that is ahead for achieving
Soil Mission objective 7, which actually lumps all
EU-based Soil Mission objectives into one sin-
gle objective for soils outside the EU, along with
all related harmonization and integration issues,
into one worldwide perspective.

Although overarching efforts to quantify the
EU impact on soils outside the EU are absent,
this definitely does not imply there are no current
research studies that have tried to assess the
impact of EU policy and actions on soils outside
of the EU. We bring together here a summary of
recent efforts. We also identified key databases
that offer the potential for assessing EU global
soil footprint. It should be emphasized that none
of the referred papers includes a comprehen-
sive impact assessment on soil functioning and
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health, specifically. We emphasize that this doc-
ument focuses on the footprint of food, fiber and
biomass production, as these areis is the spe-
cific focus of SO7. This does not imply that no
other footprints are worthwhile to investigate, as
is also highlighted by multiple members of our
SOLO Think Tank. As explained further in the
document, expanding the Mission objective to
encompass a broader definition that allows for a
comprehensive assessment of impacts is worth-
while to consider in this regard. This revision
would enable future policy actions to address
not only biomass and food-related soil impacts
but also non-biomass related influences such
as pesticides, mining activities, infrastructure
developments (e.g., for tourism), and climate
change effects. It may also be beneficial to con-
sider the impact of exported soil amendments
(e.g., herbicides, pesticides) and waste (result-
ing e.g. in landfills) from the EU on soils outside
the European Union.

How to establish global
ecological footprint of the
EU-food and biomass system

The ecological footprint (EF) of the EU-27 be-
tween 2004 and 2014, and how it exceeded
regional bio-capacity, was assessed by Gal-
li et al. (2023). The study used an extended
multi-regional input-output approach (MRIO),
highlighting food as a major contributor. The
MRIO approach can analyse the ecological
footprint (EF) and, as part of the EF, the food
footprint (FF) of a region (e.g. a country, a
group of countries, ...), considering both the
demand and supply aspects, including trade
and multiple externalities. However, it needs
to be stressed that the EF was focused on
resource dependence and carbon emissions,
rather than soil impact. The overall conclu-
sion was that a quarter of the EU bio-capacity
for food consumption originates from non-EU
countries (According to the Global Footprint
Network, biocapacity stands for the regener-
ative capacity of our planet’s ecosystems. The
biocapacity metric, therefore, quantifies the
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renewal rate of ecosystems around the globe).
Vanham et al. (2023) performed a similar ap-
proach, to track the land footprint (LF) and wa-
ter footprint (WF) of food consumption in the
EU. The EU LF and WF were estimated at 140-
222 Mha yr" and 569-918 km?® yr ', constitut-
ing 5-7% of global agricultural LF and 6-10%
of global agricultural WF. Most of this footprint
(>50%) was within the EU in all model varia-
tions. While the impact at EU level was similar
in the different model variations, the non-Eu-
ropean impact differed quite strongly accord-
ing to impact region across the world, between
different model runs. The study underlines the
importance of a consistent and standardised
methodology, since numbers differed strong-
ly from similar earlier efforts, and were highly
variable also within the study. Also here, no di-
rect impact on soil functions was considered,
but the LF clearly shows the large potential
soil surface affected. It is clear that the met-
ric used is simplified (e.g. it does not account
for how land and water are managed, or when
the land use was changed to agriculture) and
thus contains potential inherent limitations and
biases, e.g. preferring intensive land manage-
ment over extensive management.

Gilijum et al. (2016) identified priority areas
for European resource policies using an adapt-
ed MRIO-based footprint assessment, present-
ing a comprehensive assessment for the EU
from 1995 to 2011. The study revealed a signifi-
cant shift in the origin of raw materials, with the
share extracted within the EU falling from 68% in
1995 to 35% in 2011. Materials extracted in Chi-
na equaled the share of EU’'s own material ex-
traction by 2011. Regarding product composition,
construction was confirmed as the most import-
ant sector contributing to the material footprint,
followed by the group of manufacturing products
based on biomass. The study highlights the fact
that studies applying economy-wide material
flow analysis so far mostly produced aggregated
national indicators, making the results difficult to
connect to policies, which are often designed for
single sectors or consumption areas. No specific
soil impact could be assessed from this study.

Bruckner et al. (2019) performed a glob-
al cropland footprint of the EU’s non-food
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bio- economy. They linked the biophysical mod-
el LANDFLOW with the EXIOBASE 3 MRIO mod-
el, to provide detailed insights into product and
country-specific footprint. The study revealed
that two-thirds of the cropland required for the
EU’s non-food biomass consumption is located
outside the EU, particularly in China, the US, and
Indonesia, Notably, oilseeds for biofuels, de-
tergents, and polymers represent the dominant
share (39%) of the EU’'s non-food cropland de-
mand. This paper provided the first assessment
of the global cropland footprint of non-food
products of the European Union (EU). The study
concluded that if the EU Bioeconomy Strategy
is to support global sustainable development,
a detailed monitoring of land use displacement
and spillover effects is decisive for targeted and
effective EU policy making. The paper points to
the fact ‘that Europe stands out as the only world
region that is a net-importer of the four major
natural resource categories: materials, water,
carbon and land’. No specific soil health effects
were investigated in the paper.

MRIO?

The Multi-Regional Input-Output (MRIO) ap-
proach is an analytical technique used in eco-
nomics to explore the relationships between
different regions or countries within the global
economy. It focuses on:

Economic interactions: MRIO models cap-
ture how industries in different regions or coun-
tries interact with each other. They account for
the flow of goods and services across regional
boundaries, offering a detailed view of economic
dependencies and supply chain linkages.

Environmental and social Impacts: by in-
tegrating economic data with environmental
and social data, MRIO models can assess the
indirect effects of production and consump-
tion activities. This includes tracing the envi-
ronmental impacts, such as carbon emissions
or resource usage, and social effects, like
employment, associated with production pro-
cesses throughout global supply chains.

Sectoral and regional Analysis: MRIO mod-
els divide the economy into sectors and regions,
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providing insights into the economic activities
within each sector and the transactions between
sectors across different regions.

https://www.footprintnetwork.org/resourc-
es/mrio/

Key papers on country-
specific assessment

o Cederberg et al. (2019) focused on the
environmental impacts of Swedish food
consumption, specifically in relation to ag-
rochemicals, greenhouse gas emissions
and land impacts. Equally utilizing the EX-
IOBASE database, the research calculat-
ed novel footprint indicators for pesticides
and antimicrobial veterinary medicines. Key
findings revealed that a significant share of
Sweden’s pesticide footprint is embedded
in imports, primarily from Europe and Lat-
in America. The paper specifically points to
the ‘need for better data and statistics on
the use of pesticides, veterinary medicines
and agrochemicals residuals (especially in
developing countries) as well as improved
spatial data on agricultural activity to fur-
ther reduce uncertainty in the environmen-
tal footprint of Swedish food consumption.’

e Kalt et al. (2021) performed an analysis
tracing Austria’'s biomass consumption to
source countries, using a physical con-
sumption-based accounting approach,
combined with national statistics and pro-
cess chain modelling. 55% of Austria’s total
biomass consumption originated from do-
mestic forestry or agriculture, and 30% from
neighbouring countries. Products with the
largest biomass footprints like beef, pork,
milk, cereal products, paper, and wood fuels
were primarily sourced from Central Europe.
Biomass from non-EU countries accounted
for about 8% of Austria’s primary biomass
footprint. This paper indicates the strong
dependence of country- or region-specif-
ic preferences for the EU global footprint,
which thus likely also accounts for the soil
footprint. More specifically, the paper high-
lights that ‘in Austria, strong preference for
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food and bioenergy from domestic sources
is prevalent, while especially biomass im-
ports for energy are met with scepticism.

Habitat loss and agricultural
trade

Schwarzmueller and Kastner (2022) performed
a study that linked agricultural trade to glob-
al loss of species. Utilizing FAOSTAT data and
the Species Habitat Index (SHI) as a measure
of ecosystem intactness, the research cov-
ered trade flows between 223 countries over
15 years. It showed agricultural expansion as
a major driver of biodiversity loss, especially in
South America, Southeast Asia, and Sub-Saha-
ran Africa, also showing that Western Europe,
North America, and the Middle East have sig-
nificant biodiversity footprints outside their
borders. Particular attention was paid to soy-
beans, palm oil, and cocoa. The authors also
indicate the limitations of their study: “directly
relating the species habitat loss to the produc-
tion of agricultural products, we neglected the
role of other drivers like logging or mining. Al-
though agricultural expansion is by far the most
widespread form of land-cover change, this in-
troduces some uncertainty when these prod-
ucts are traded between different countries.”

In another study linking biodiversity de-
cline to agricultural expansion, Zabel et al.
(2019) predicted global impacts of future crop-
land expansion and intensification on biodiver-
sity. Although, like all others, this study was not
aimed at assessing soil effects, it points to the
interesting observation that ‘production gains
will occur at the costs of biodiversity predom-
inantly in developing tropical regions, while
Europe and North America benefit from lower
world market prices without putting their own
biodiversity at risk. Cropland expansion most-
ly affects biodiversity hotspots in Central and
South America, while cropland intensification
threatens biodiversity especially in Sub-Saha-
ran Africa, India and China.’ This points to the
importance of prioritization to balance biomass
transfers with conservation goals, preferentially
first tackling the most affected regions.
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Analyses and Tools from the
JRC

The Joint Research Centre (JRC), in collaboration
with Eurostat, has developed a model to estimate
the European Union’s (EU) land footprint—the to-
tal area required to produce the goods consumed
by its population. This model evaluates three land
types: cropland, grassland, and forest land used
for timber products. It accounts for both domes-
tic land use within the EU and international land
used for imported products. Over 500 food and
bio-based products were individually analyzed
to accurately attribute the origin of agricultural
or forest land utilized in production. For instance,
the cropland associated with EU imports of
chocolate from Switzerland is traced back to the
countries where the cocoa was originally culti-
vated (De Laurentiis et al. 2024, Sala et al. 2025).

Between 2014 and 2021, the EU consis-
tently remained a net importer of cropland—Iland
used to grow products consumed within the
EU—and a net exporter of grassland, which sup-
ports products consumed outside the EU. The
net trade balance for forest land varied annual-
ly, with imports and exports fluctuating within a
similar range. In 2021, the EU imported approx-
imately 50 million hectares of cropland, an area
comparable to the size of Spain, while exporting
about 28 million hectares. Domestically, the EU
utilized 94 million hectares of cropland, mea-
sured in terms of harvested area. The prima-
ry countries supplying cropland to the EU were
Argentina, Brazil, and Ukraine, with key imports
including vegetable oils (such as palm and sun-
flower seed oil), oilseed crops (like rapeseed and
soybeans), and food industry residues like oil-
cakes, predominantly used as animal feed.

In 2021, the average EU citizen utilized 0.26
hectares of cropland to meet their annual con-
sumption needs for food and other bio-based
products, including livestock, oils, and cotton. In
contrast, the global average was approximately
0.19 hectares per person. Notably, the EU’s per cap-
ita cropland use slightly exceeded the 0.25-hect-
are threshold per global citizen established by the
Planetary Boundaries framework, a limit set to pre-
vent irreversible environmental damage.
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Overarching conclusion

The state-of-the-art analysis shows that the
MRIO and the JRC approach can be good start-
ing points for analysing and quantifying the
food, feed and timber exchange between the
EU and third countries, and its land footprint.
A key challenge will lie in relating these mostly
land cover-based assessments of footprint, to
soil health and soil functioning. A good starting
point here will be to rely on databases for soil
properties, for which potential examples cur-
rently available are summarized below:

e www.isric.org: ISRIC is an independent
foundation with a mission to serve the in-
ternational community as a custodian of
global soil information. It supports soil
data, information and knowledge provi-
sioning at global, national and sub- national
levels for application into sustainable man-
agement of soil and land. The ISRIC library
has built up a collection of around 10,000
(digitized) maps and 17,000 reports and
books. ISRIC highlights standardization as
a major challenge, indicating that harmo-
nizing data from diverse sources with vary-
ing standards remains complex, affecting
the consistency of global soil information.
The database is also less fitting to assess-
ing dynamic soil status: soil properties can
change over time due to factors like land
use and climate change, necessitating con-
tinuous updates to maintain data accuracy.

e https://www.fao.org/global-soil-partner-
ship/regional-partnerships/en/: The Global
Soil Partnership (GSP), established by the
Food and Agriculture Organization (FAO), has
formed Regional Soil Partnerships (RSPs) to
address specific regional soil challenges and
priorities. These RSPs collaborate closely
with FAO Regional Offices. The RSPs link up
different national soil entities (soil survey
institutions, soil management institutions,
soil research institutions and soil scientists
working in land resources, climate change
and biodiversity institutions/programmes),
and could be a good starting point for local
data for soil functioning assessment.
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e https://www.footprintnetwork.org/re-
sources/mrio/: The Global Footprint Net-
work leverages MRIO modelling as a tool
for analysing financial flows between the
major economic sectors of different coun-
tries. By integrating data from the National
Footprint and Biocapacity Accounts, this
approach extends to estimating resource
flows, allowing for the tracking of resource
movement through global supply chains.
This provides valuable insights into the
ecological impacts of consumption and
production patterns. However, the MRIO
framework operates at the country or re-
gional level and lacks the granularity to
link activities to specific soils or directly
assess soil impacts.

Based on the state-of-the-art, it becomes
clear why the Mission Objective 7’s first sub-
objective is focused on setting a clear baseline
for establishing the EU’s global soil footprint in
line with international standards. Current state-
of-the-art has not even started performing this
exercise at large scale for soil functions and soil
ecosystem services, rather linking trade ex-
changes at best to land use but not to specific
ecosystem soil functions and related soil ser-
vices. As emphasized by van der Putten et al.
(2023), soil health laws should account for global
soil connections. Establishing these connections
will thus be crucial to defining future actions to
improve EU soil footprint.

Knowledge Gaps

This section outlines the initial knowledge gaps
(KG) as summarized from the broad state-of-
the-art before the first review round in 2024.
These gaps were first identified during pre-
paratory meetings held prior to the Barcelona
SOLO stakeholder meeting in Autumn 2023 and
were further refined through discussions with
the stakeholder group in Barcelona and beyond
during stakeholder interaction moments. The-
sey form the basis for the five detailed priority
knowledge gaps outlined further in this docu-
ment. The specific state-of-the-art is mainly de-
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tailedworked out in the priority knowledge gaps,
to avoid repetition and to allow for a more ac-
tionable focus on the priority knowledge gaps.

KG1: Disentangling biomass
import effects from other soil
impacts

As it is currently defined, the Soil Mission does
not account for land degradation resulting
from industrial soil contamination, such as that
caused by European factories or other polluting
economic activities outside EU. Similarly, deg-
radation from open mining activities, which are
a source for imported mineral resources, is also
excluded. Additionally, the impact of exporting
fertilizers and pesticides from the EU, and their
subsequent application to soil, may not be ade-
quately considered.

In the Implementation Plan, it is indicat-
ed that “a first baseline has to be created by
Mission activities, with specific focus on food,
feed and fibre imports leading to land degrada-
tion and deforestation.” A key point raised by
multiple members of the Think Tank, is that the
focus on biomass imports is too narrow to al-
low a baseline for global footprint on soils of EU
actions to be formulated.

However, this does not mean that quan-
tifying the impact of imported biomass alone
would not be a valuable goal. As highlighted
in the state-of-the-art, the potential land im-
pact of the food footprint is already significant
(Vanham et al. 2023).

A potential path forward has been suggest-
ed by multiple stakeholders: expanding the Mis-
sion objective to encompass a broader definition
that allows for a comprehensive assessment of
impacts. This revision would enable future pol-
icy actions to address not only biomass and
food-related soil impacts but also non-biomass
related influences such as pesticides, mining
activities, infrastructure developments (e.g., for
tourism), and climate change effects. It may also
be beneficial to consider the impact of exported
soil amendments (e.g., herbicides, pesticides)
and waste (resulting e.g. in landfills) from the EU
on soils outside the European Union.

205


https://www.footprintnetwork.org/resources/mrio/
https://www.footprintnetwork.org/resources/mrio/

Eric Struyf et al.: Outlook on the knowledge gaps the EU global footprint on soils

KG2: There is no standard soil
footprinting methodology

Even at the EU level, assessing soil health
across the EU remains challenging due to the
lack of a legal reporting requirement, a uni-
fied definition, and standardized measurement
methods. There are updated environmental
footprint methods available, where land use
transformation is linked to four soil properties,
with a composite indicator addressing biotic
production, erosion resistance, groundwater
regeneration and mechanical transformation,
developed by JRC. This could be a good start-
ing point to standard soil footprint method-
ology development. Even if standardized soil
data from non-EU countries became available
(comparable to the LUCAS datasets in the EU),
a significant knowledge gap remains. This gap
involves identifying the specific impacts of the
EU on soil health observations and further re-
gionalizing these impacts to specific countries.
Additionally, there is a need to differentiate
between human and natural impacts, as well
as between non-biomass and biomass-relat-
ed human impacts. As clear from the state-
of- the-art, the term footprint can also cause a
lot of confusion, since multiple different foot-
print methodologies have been developed,
ranging from product, consumption, land, wa-
ter to environmental footprints. If a solid ‘soil’
footprint needs to be developed from this, it
is absolutely necessary to also focus here on
achieving a consistency of approaches. What
is a soil footprint?

KG3: Trade-offs between soil
impacts

The foot- printing objective of the Soil Mis-
sion targets multiple soil impacts lumped to-
gether, unlike the other Soil Mission objec-
tives, which are Europe-oriented and aim for
one specific soil function. As a result, a new
challenge will arise, with trade-offs between
regional (e.g. water cycle, land management,
...) and global impacts (e.g. climate change,
food security) and between different key focal

206

impact areas, e.g. carbon sequestration and
biodiversity. Even if a clear baseline for some
functions is established, there will always be
trade-offs with other functions (Zwetsloot et
al. 2020). A sound methodology for assessing
these trade-offs will have to be defined, max-
imizing synergies and potentially prioritizing
certain soil functions in certain areas, based
on clear criteria. Here, it is clear that prioriti-
zation should not select one perspective and
discard the others.

KG4: Scale issues

How we moveto move from case studies to a
baseline for global EU impact? How do we to link
the changes in soil to EU policy and actions, and
how do weto distinguish EU impact from other
local and global impacts? Here is also a matter of
scale: at which scale will it be possible to define
the impact/EU action relation?

KG5: Impact of local and broader
outside EU policy and soil
governance

The EU footprint, and any actions related to
reducing it, will also interact with local poli-
cy actions, particularly in regard to national
definitions of “sustainability”. This might com-
plicate both the definition of potential EU re-
mediation actions to be taken, and of footprint
establishment. It will be key to carefully map
and take into account local policy when defin-
ing EU actions.

KG6: Potential benefit of the use
of new biotechnology, as well as
agro-ecological approaches

The potential of new biotechnology and
agro-ecological approaches to lower the foot-
print of EU food import is currently not studied in
detail. This can include e.g. microbial tools (Ba-
tista and Singh 2021) and agro-ecology innova-
tion (Hawes et al. 2021).
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KG7: Link to other Soil Mission
objectives

Other Mission objectives focus on EU soils, mostly,
without having to consider global impacts. Risk of
EU solutions with a footprint abroad is strong. We
need to consider the potential footprint of actions
and of their interactions that will emerge from
other Soil Mission objectives, in a footprint anal-
ysis. How this can beto achieve d this is currently
unclear. Yet, it is clear that the outside-EU foot-
print objective needs to become an essential part
of the soil conversations in Europe. Mechanisms
need to be developed to implement the footprint
analyses in EU soil policy. A sound coordination of
approaches suggested within other Soil Mission
objectives with their impact on global footprinting
is therefore a key aim for Soil Mission objective 7.

Three Horizon Europe Cluster 6 projects
have recentlyjust started, aiming to improve
EU- African Union cooperation on agroforest-
ry management for climate change adaptation
and mitigation (HORIZON-CL6-2024-FARM-
2FORK-01-10). Agroforestry research is related
to soil mission objectives.

e Informed Decision-Making for Agroforestry
Systems in Africa through a Network of Liv-
ing Labs (AfroGrow)

o Strengthening rural livelihoods and resil-
ience to climate change in Africa: innova-
tive agroforestry integrating people, trees,
crops and livestock (Galileo)

o Novel WEFE Nexus-based approaches to-
wards agroforestry management in the
Greater North African Region (Trans-Sahara)

Engagement within the
Think Tank

Process for document
preparation

We have organized several meetings with the
different key stakeholders involved in drafting
the document:
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* 04/07/2023: AM, online TEAMS

Present: Michael Obersteiner, Isabelle Ver-
beke, Dries Roobroeck, Ivan Janssens, Eric
Struyf, Jessica Donham, Peter Laszlo
05/07/2023: AM, online ZOOM

Present: Orsolya Nyarai, Detlef Gerdts, lvan
Janssens, Eric Struyf Outcome: Get to know,
planning and governance of the TT.
Discussion on key issues, challenges and op-
portunities that all stakeholdersand TT partic-
ipants identify regarding the overall objective.
23/11/2023: AM, online TEAMS

Present: Michael Obersteiner, Dries Roobro-
eck, Eric Struyf, Vincent Dauby, Peter Laszlo,
Orsolya Nyarai, Detlef Gerdts, Mirco Barbero
Outcome: Preparation of roadmap and
scoping document for Barcelona meeting,
to ensure effective discussions.

5/12/2023, 6/12/2023 Barcelona

Intensive discussion with stakeholders for
this TT (present: Detlef Gerdts, Orsolya
Nyarai, Eric Struyf, Vincent Dauby) and other
TTs on the linkages of the Mission objective
to other Mission goals, and identification of
key challenges and knowledge gaps asso-
ciated to achieving the Mission objectives.
28/06/2024, 3/07/2024, AM, online TEAMS
Discussion on prioritization among the
identified knowledge gaps (present: De-
tlef Gerdts, Orsolya Nyarai, Eric Struyf, lvan
Janssens, Gerry Lawson, Ellen Fay; Mirco
Barbero, Peter Laszlo), resulting in the iden-
tification of 3 key steps necessary to enable
to address this Mission objective success-
fully, that can serve as a base point to iden-
tify key R&I action to roll out.

10/10/2024, AM, online TEAMS

Continued discussion on the prioritization,
to prepare for the SOLO Sofia stakehold-
er meeting (present Ellen Fay, Dries Roo-
broeck, Peter Laszlo, Vincent Dauby, Eric
Struyf, Gerry Lawson, Mirco Barbero, Zach-
aria Asri (intern with Ellen Fay).

5/11/2024, 6/11/2024 Sofia

Intensive discussions with Eric S, Ellen Fay,
Vicent Dauby and Kostadin Evegniev Ata-
nasov and other TT and stakeholders on the
prioritisation of the knowledge gaps and the
visualisation of the current TT outcomes.
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After the Sofia meeting, there was an intense
circulation of this document, with multiple
new stakeholders involved. Strong input was
provided by new authors Mathis Wackerna-
gel, David Robinson and Arwyn Jones as well
as all people already named above, with fo-
cus on prioritization and state-of-the-art.

Roadmap: initial
knowledge gaps
translated into actionable
priority knowledge gaps

What is most urgently needed before the EU can
start to have a better grip on its soil footprint out-
side the EU? Reconsidering the earlier research
gaps, condensing them into the very essence
of what needs to be achieved, triggered a solid
consensus among the stakeholders. Compared
to other soil Mission objectives, it will be clear
that these R&l priority needs are surprisingly ba-
sic. The authos consider that a concerted effort
to address all five key priority knowledge gaps
identified, is key to enabling the first essential
steps in achieving a first quantified impact of EU
actions on soils worldwide.

1. We need to define current hot-spots of soil
footprint for maximum impact

To identify the key impact areas of the European
Union (EU) on soil functions, soil health and soil
services worldwide, assessing key value chains
in food and fibre industries is essential. First, a
detailed global map of import of food and fibere
commodities into the EU needs to be produced, by
providing a total inventory of potential impacted
soil surfaces per commodity, per impact region.
For each of the imported commodities, imported
amounts can be matched to per area productivity
potential. Actions should use the most detailed
available databases (a first overview of poten-
tial databases is given below). Here it is possible
to build on practices developed e.g. for EUDR,
which works based on a central EU Registry. An-
other, more advanced pathway can be based on
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the Land Parcel Identification system (LPIS, Eu-
ropean Court of Auditors 2016) in each exporting
country, linked to national cadastres.

Subsequently, this map needs to be linked to
known effects of agricultural, forestry and agro-
forestry activity on soil's provision of ecosystem
services, both negative and positive (this can be
based e.g. on quantification systems developed
in EU Horizon projects LANDMARK and BENCH-
MARKS). The impact will depend on the sustain-
ability of practices applied. Footprinting should
distinguish between unsustainable practices,
which degrade soil, and sustainable practices,
which maintain soil health. Footprints will also
need to distinguish whether import of biomass re-
quires land use change (which is typically a driver
for e.g. biodiversity loss, soil erosion, soil carbon
storage, soil sealing and soil carbon emissions).

In a final step, the theoretical maps produced
can be matched against actual observations of
soil status in the identified key impact areas. Areas
where potential impact is largest, with matching
observed persistent changes in soil health, can
thus be identified. Remediation actions in these
areas can be defined, with immediate potential
for assessing the soil health status compared to
baseline conditions from earlier observations.
Here, it will be essential to take into consideration
external factors that can affect outcomes beyond
the applied practice(s), e.g. climatic stresses.

It will be essential to implement concrete
solutions based on a thorough assessment
of the value chains, e.g. through detailed life
cycle assessments (LCAs). LCAs provide de-
tailed insights into the environmental impacts
associated with each stage of a product’s life,
from production to disposal. By focusing on
soil-related impacts, LCAs can help identify
hotspots where soil degradation is most se-
vere. The MRIO studies, as identified earlier,
have performed studies that partly reflect the
approach above, albeit with following limita-
tions: the studies currently cannot relate spe-
cific soils directly to the import and export of
commodities, did not focus on soils and offer a
large-scale overview of broad sectoral impact.
The challenge will lie s in expanding this broad
overview to include multiple soil functions,
relatinge impact to specific soils through de-
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tailed value chain analysis, and to relate MRIO
outputs to actual observed data. A brief over-
view of key impact studies of EU (environmen-

Table 1. Key impact studies of EU environmental impact worldwide.

Study EU origin region | Outside EU impact region Study target

Vanham et al. 2023 World
Beylot et al. 2019 EU World
Kumeh and Ramcilovic- EU World
Suominen 2023
Galli et al. 2023 EU World
Giljum et al. 2016 EU World
Zhong et al. 2024 EU World
Bruckner et al. 2019 EU World
Cederberg et al. 2019 Sweden World and other EU
Kalt et al. 2021 Austria World and other EU
Schwarzmueller and World World

Kastner 2022

Land footprint Water footprint No
soil focus

Environmental footprint No soil
focus

Deforestation No soil focus

Ecological footprint No soil focus

Focus on material extractionNo
soil focus

Demand for agricultural landNo
soil focus

Non-food bioeconomyNo soil focus

Focus on carbon footprint and
pesticide footprint
No soil focus

Origin of biomass consumed
No soil focus

National trade profiles for 191
consumed items No soil focus

tal) impact worldwide is summarized below,
showing again the current absence of detailed
soil impacts (Table 1).

Challenging to include latest data Strong impact
of chosen ‘accounting’ method

Consumption identified as key explanatory
variable

Current regulations risk shifting responsibility to
non-EU countries. Spillover risk

Food responsible for 1/3 of total ecological
footprint

Strong proportional increase in relative
importance of non-EU materials between 1995
and 2011

Green Deal spillover effects exceed potential
positive effects outside EU

2/3 of cropland required for EU non- food
biomass is outside EU

Highlights need for improved spatial data
Outside EU impact mainly in Latin America

Only 7.6 % of biomass originates outside EU

Potential to identify key consuming countries
where consumption has highest impact

Databases that can potentially be used are

(non-exhaustingly) listed below:

e Food and Agriculture Organization (FAO)
- The FAO collects and disseminates data
on agriculture, forestry, fisheries, and
land use. Its Global Soil Partnership (GSP)
works to improve soil governance and pro-
mote sustainable soil management. The
FAO’s Soil Information System (SIS) and
Global Soil Organic Carbon Map (GSOC-
map) can be a valuable assett for mapping
the EU’s global soil impact.

International Union for Conservation
of Nature (IUCN) - The IUCN focuses on
conservation and sustainable use of nat-
ural resources. Its work on ecosystem
management and biodiversity, including
soil health, provides potentially import-
ant data that can be used to assess the
impacts of EU-related activities, for ex-
ample, through the use of the Red List of
Ecosystems, the Land Health Monitoring
Framework, the Natural Capital Protocol,
or the IUCN STAR Metric.
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JRC Global Forest Map - This map synthe-
sizes information on intensive and extensive
agricultural use worldwide.

World Resources Institute (WRI) - The WRI
provides data and analysis on global re-
sources, including land use and soil health.
Tools like the Global Forest Watch and the
Aqueduct Project offer potential insight into
land degradation and soil conditions.
Global Environment Facility (GEF) - The
GEF funds projects related to biodiversity,
climate change, land degradation, and sus-
tainable land management. The generated
data could be valuable for the assessment.
Intergovernmental Panel on Climate
Change (IPCC) - The IPCC provides scien-
tific assessments on climate change, includ-
ing its impacts on soil health. Its reports and
data can offer insights into how EU-related
activities contribute to soil degradation and
what mitigation measures can be adopted.
International Soil Reference and Information
Centre (ISRIC) - ISRIC provides global soil
data and information. Its World Soil Informa-
tion service offers a comprehensive database
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« European Soil Data Centre (ESDAC) - ES-
DAC, managed by the JRC, provides com-
prehensive soil data and information. It sup-
ports the development of soil policies and
monitoring programs across Europe, aiding
in systematic soil function assessment.

 EUSO Dashboard - The EUSO Soil Degra-
dation Dashboard is an online tool devel-
oped by the JRC to monitor and assess soil
degradation across Europe by providing
data on factors like erosion, organic carbon
loss, and land use.

« OECD (Organisation for Economic Co-
operation and Development) - The OECD
produces a wide range of research, reports,
and statistics on various economic and so-
cial issues. It regularly publishes bench-
marks like the OECD Economic Outlook, and
the OECD Better Life Index. Data are e.g.
available for nutrient (im)balance; The nutri-
ent balance is defined as the difference be-
tween the nutrient inputs entering a farming
system (mainly livestock manure and fer-
tilisers) and the nutrient outputs leaving the
system (the uptake of nutrients for crop and
pasture production). A nutrient deficit (neg-
ative value) indicates declining soil fertility.
A nutrient surplus (positive data) indicates a
risk of polluting soil, water and air.

o Africa Knowledge Platform - The Africa
Knowledge Platform is an initiative launched
by the JRC in collaboration with various
partners to consolidate and disseminate
knowledge, data and resources pertinent to
Africa’s development. Specific focus areas
include sustainable development and envi-
ronmental conservation, i.e. climate change
mitigation, sustainable agriculture and nat-
ural resource management.

2. We need a harmonized and regionalized soil
health assessment methodology, incl. trade-offs

3. We need to disentangle food and fibre impact

from other impact

Reminiscent of the EU Soil Monitoring Law (SML)
that is intended to provide a comprehensive
framework for monitoring soil health across the
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European Union, an overall framework has to be
available of key soil ecosystem services to as-
sess, and how to assess them, for outside EU soil
footprinting and assessment of current impact
and future potential improvements. Like the EU
SML (which is currently not yet approved by EU
countries), it can build on existing initiatives and
ensure systematic, standardized, and obligatory
soil monitoring. This standardized footprinting
methodology can be linked to actions taken un-
der priority knowledge gap 1, enabling to install
a solid on-the-ground monitoring of effective
soil impact related to export of key agricultural
commodities to the European Union, with a pri-
mary focus on identified hotspots of European
impact. This standard footprinting can be based
on a solid range of already existing national and
international initiatives to assess soil health and
soil ecosystem services, of which a non- limit-
ing overview is provided below. Both KGs are in-
terlinked here, because the narrow focus of the
Soil Mission on food and fibere import impact will
require distinguishing these impacts from other
impacts. As emphasizsed earlier, not all authors
agree with this narrow focus, yet given its cur-
rent central appearance in mission objective 7, it
will need to be addressed.

« EU Common Agricultural Policy (EU CAP)

Under the EU CAP, farmers receiving direct pay-
ments must comply with Good Agricultural and En-
vironmental Conditions (GAEC) standards. If they
receive eco- scheme payments the expectations
are greater, and higher still for some investment or
agri-environment climate payments in Pillar II.

e EU CAP Network

The EU CAP Network is set up to support the
implementation of the CAP Strategic Plans. The
Network is a forum for National CAP Networks,
organizsations, administrations, research-
ers, entrepreneurs and practitioners to share
knowledge and information about agriculture
and rural policy. The Network has three main
objectives: design and implementation of the
CAP Strategic Plans (CSPs), support innovation
and knowledge exchange including EIP AGRI (),
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and evaluation and monitoring of the CSPs. The
EU CAP Network also operates thematic Focus
Groups with temporary groups of selected ex-
perts focusing on a specific subject, sharing
knowledge and experience, for example on ‘Re-
generati ve agriculture for soil health’.

o Germany

Germany has implemented the Federal Soil Pro-
tection Act (BBodSchG) and the Federal Soil
Protection and Contaminated Sites Ordinance
(BBodSchV), which mandate systematic soil
monitoring and protection measures.

» United Kingdom

The UK has several statutory instruments that
protect soil health, such as England’s Agriculture
Act which allows the Government to pay farmers
to protect and improve soil quality and the Envi-
ronmental Improvement Plan, which sets nation-
al targets for sustainably managed soils.

e France

France’s national policy on soil protection is embed-
ded in various legislative acts, including the Envi-
ronmental Code. The country has developed a Na-
tional Soil Monitoring Network (Réseau de Mesures
de la Qualité des Sols, RMQS) that systematically
assesses soil quality across different land uses.

e Hungary

The Hungarian Soil Conservation Action Plan
(HSCAP) focuses on the protection of soil under
agricultural cultivation. The document proposes
a division of labour and responsibilities between
the farmers and the state for the long-term con-
servation of soils and the maintenance of fertil-
ity along food chain safety principles. The HS-
CAP identifies the most important elements of
soil protection, as follows: reasonable land use,
preservation of high-quality lands, lands that
are already deteriorating and that are targeted
as those for improvement of related conditions;
termination of soil degradation processes; main-
tenance and improvement of soil water balance
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and moisture circulation; control over substanc-
es introduced into the soil, nutrient-containing
and municipal and industrial by-products.

¢ LUCAS (Land Use/Cover Area frame
statistical Survey)

LUCAS assesses land use, land cover, and soil
characteristics across the EU. The survey in-
cludes systematic soil sampling and analysis.

o Australia

Australia’s National Soil Strategy aims to ensure
sustainable soil management through systematic
monitoring and assessment. The strategy is sup-
ported by the National Soil Monitoring Program,
which provides regular and comprehensive data
on soil health and functions.

¢ United States

The United States has several programs dedi-
cated to soil assessment, including the Natural
Resources Conservation Service (NRCS) and the
Soil Health Division within the Department of Ag-
riculture (USDA). These programs systematically
monitor soil health and promote sustainable soil
management practices.

* BIO-EAST

BIOEAST, the Central and Eastern European Ini-
tiative for Knowledge-based Agriculture, Aqua-
culture, and Forestry in the Bioeconomy is a
collaborative initiative involving 11 Central and
Eastern European (CEE) countries (from the Bal-
tic through Central Europe to the Balkans) aim-
ing to develop sustainable bioeconomy in the
region. It has supported the knowledge-based
interconnection of policies on biomass produc-
tion and processing on a regional scale, as well
as the strengthening of research and innova-
tion capacities in Central and Eastern Europe.
11 country-specific studies have already been
completed, which individually analyse the poten-
tial and development opportunities of the mac-
ro- region’s biomass-based economy, in order to
formulate common knowledge needs and prior-
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ities for a more efficient exploitation of the po-
tential of bio-based resources in the countries of
the region. The research and innovation agenda
developed will greatly facilitate joint thinking and
mutually supportive action between science and
practice, which could lead to a more sustainable
and secure use of resources in the future.

* FAO

The FAO Soils portal provides access to various
soils information, including a section dedicated
to making global, regional and natonal maps and
databases available.

There is an essential need for the footprint
soil health assessment framework to be regional-
ized and standardized, enabling to capture com-
plex, site-specific trade-offs among various soil
ecosystem services. It will be challenging to stan-
dardize methodologies across diverse regions
while accommodating local specificities and
trade- offs between competing ecosystem ser-
vices (Lehmann et al. 2020). They emphasize the
need for robust, scalable indicators that integrate
biological, chemical, and physical properties,
where this integration is often underdeveloped.
Balancing the demand for rapid, cost-effective
assessments with the need for depth and accu-
racy will be an additional potential hurdle. Trans-
lating assessments into actionable policies that
consider the socio-economic and ecological
trade-offs at regional level will be essential.

Robinson et al. (2024), building on five de-
cades of experience from the UK Centre for Ecol-
ogy & Hydrology (UKCEH) Countryside Surveys
(CS) of Great Britain and Northern Ireland, Welsh
Government, the Environment and Rural Affairs
Monitoring and Modelling Programme (ERAM-
MP) and the England Ecosystem Survey (EES)
monitoring, underscore the importance of long-
term soil monitoring. Principles of robust statis-
tical sampling, co-location of soil and vegetation
sampling, and integration into policy frameworks
will have to be adapted, aligned with the Driv-
er-Pressure-State-Impact- Response (DPSIR)
model. The study highlights the need to balance
regional specificities with standardized metrics
for assessing soil ecosystem services. This in-
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cludes leveraging existing initiatives like LUCAS
and integrating cost-effective, scalable soil in-
dicators (e.g., pH, soil organic carbon) linked to
ecosystem services.

4. We need to assess potential of other EU
footprinting and beyond EU impact initiatives
for soils

The European Union’s commitment to addressing
climate change and environmental degradation
has spurred the development of comprehensive
policies aimed at reducing carbon emissions,
preserving biodiversity, and promoting sustain-
able practices, including outside the EU. Mech-
anisms such as the Carbon Border Adjustment
Mechanism (CBAM), the European Union Defor-
estation Regulation (EUDR), and the Environmen-
tal Management and Audit Scheme (EMAS) are
among the most essential. Despite their ambi-
tious goals, challenges persist, including tracing
complex supply chains and ensuring compliance
with global trade rules. We here below emphasize
the importance of maximally leveraging potential
soil knowledge already gathered in these mech-
anisms to kickstart soil footprint quantification.

« CBAM

CBAM is the EU policy designed to address car-
bon leakage, by imposing a carbon price on im-
ports of goods from non-EU countries. CBAM
aims to ensure that the price of carbon reflects
the greenhouse gas (GHG) emissions embedded
in the production of goods, levelling the playing
field between EU producers and their interna-
tional competitors. It is currently in a transitional
phase (2023-2025), and initially only applied to
imports of goods whose production is carbon
intensive and at most significant risk of carbon
leakage: cement, iron and steel, aluminium, fer-
tilisers, electricity and hydrogen. A similar prin-
ciple for agricultural products could be imple-
mented, that also accounts for soil management
practices (e.g., deep tillage vs. no tillage). By
placing a carbon price on imported agricultur-
al products, CBAM can incentivize exporters to
adopt more sustainable practices that reduce
their carbon footprint. In any case, CBAM does
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not directly relate to or obliges to assess soil
impact. Its impact on soil is more of a second-
ary effect through the promotion of sustainable
practices and reduced emissions.

Matthews (2022) provided a first study of the
potential of CBAM for targeting carbon footprint
of agri-products. It came to a similar conclusion
as emphasized by our first essential knowledge
gap: “there would be major practical problems in
determining the appropriate level of embedded
emissions in imported food products, given the
complexity of food supply chains where ingre-
dients can be sourced from several countries,
all of whom may have climate policies with dif-
ferent levels of ambition. The potential severity
of these practical problems will become clearer
as experience is gained with the application of
the CBAM levy to the narrower range of industrial
products envisaged in the CBAM Regulation.”

Europe would also need a statutory car-
bon accounting scheme, building e.g. on the
Agri-ETS that are currently under discussion
(European Environmental Bureau 2024), before
extending CBAM to agriculture and forestry can
be permissible under WTO rules. Recently, the
EU commission also hinted on a market-based
system to encourage farmers and industry to
conserve nature and restore lost biodiversity by
putting a price on ecosystems. Here, it was sug-
gested to create new financial tools to compen-
sate farmers for the extra costs of sustainabili-
ty and compensate them for taking care of sail,
land, water and air. If such a system would be
implemented within the EU, an equivalent should
be developed for non-EU impact, to ensure that
within EU practices do not negatively affect oth-
er regions (Von der Leyen 2023).

« EUDR

The EUDR aims to minimize the EU’s contribu-
tion to global deforestation and forest degrada-
tion, by ensuring that products placed on the EU
market are not linked to deforestation or forest
degradation. EUDR covers commodities like soy,
beef, palm oil, wood, cocoa, and coffee. The
EUDR addresses soil functions more explicitly
than CBAM. In Kumeh and Ramcilovic-Suom-
inen (2023), EU actions on deforestation, and
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their efficiency, was critically evaluated. Also
here, the complexity and length of supply chains
were indicated as a prime challenge for tracing
the origins of commodities. For example, supply
chains for products like soy, palm oil, and beef
often involve multiple intermediaries and can
span numerous countries, complicating efforts
to ensure products are deforestation- free. The
EU’s proposed deforestation regulation empha-
sizes traceability, requiring companies to provide
geographic coordinates of the land used for pro-
duction. However, implementing such detailed
traceability measures is difficult, particularly for
commodities sourced from multiple smallholders
and mixed production systems.

The authors also indicate that current EU
policies primarily focus on improving governance
and capacity building in producing countries,
which shifts the burden of deforestation onto
these nations. This approach often overlooks
the EU’s role in driving demand for deforesta-
tion-linked products and does not adequately
address the broader structural issues of overcon-
sumption and market power imbalances. This puts
attention to the fact that EU footprint outside EU
could probably also be addressed through within
EU actions changing consumption patterns.

« EMAS, CSDD and CSRD

Soil foot-printing can be considered as an essen-
tial part of the ‘EMAS’ Community eco-manage-
ment and audit scheme, that aims to drive or-
ganisations towards circularity and reduce their
impact on the environment, albeit not specifically
related to non-EU impact. In 2021, updated En-
vironmental Footprint (EF) methods, comprising
the Product Environmental Footprint (PEF) and
Organisation Environmental Footprint (OEF) and
Consumption Footprints (CF) were published
by the EU Commission. EF methods are based
on life cycle assessment. The EF relates to soil
in the land use impact category. Here, for land
occupation, impact is related to changes in soil
quality multiplied by area and duration. Land
transformation considers the extent of changes
in land properties and the area affected (chang-
es in soil quality multiplied by the area). Recom-
mendations specifically refer to the ‘Soil quality
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index’. This index is the result of the aggrega-
tion, performed by JRC, of 4 indicators (biotic
production, erosion resistance, mechanical fil-
tration and groundwater replenishment) provid-
ed by the LANCA model for assessing impacts
due to land use, as reported in De Laurentiis et
al. (2019). The LCI (life cycle inventory) provides
specific recommendations for data collection for
nitrogen emissions from soil related to fertilizers,
soil impact of heavy metals and pesticides, soil
carbon emissions and soil carbon stocks. In this
corporate framework, if avoiding soil footprint
becomes institutionalized in EU, specific soil
directives could become part of the Corporate
Sustainability Due Diligence Directive (CSDD),
that aims to ensure that companies within the EU
and those supplying the EU market take respon-
sibility for identifying, preventing, and address-
ing adverse environmental and human rights
impacts throughout their value chains. This also
relates to the Corporate Sustainability Reporting
Directive (CSRD), which aims to enhance and
standardize sustainability reporting by compa-
nies operating within the EU.

« EU Taxonomy regulation and the EU
sustainable finance framework

The EU taxonomy regulation is a classification
system that defines criteria for economic activi-
ties that are aligned with a net zero trajectory by
2050 and the broader environmental goals oth-
er than climate. By embedding soil criteria in the
regulation, this could promote explicit positive
soil action. Here, there is a potential link to natural
capital assessment and the System of Environ-
mental Ee conomic Accounting (SEEA), a statis-
tical system that brings together economic and
environmental information into a common frame-
work to measure the condition of the environ-
ment. Its suitability to support regional, national
and global monitoring efforts is being increasingly
recognized in forums such as the UN Sustainable
Development Goals, the Aichi Biodiversity Targets
and the development of a Natural Capital Protocol
(Obst 2015). Linking global economic models to
biophysical models could also be used to assess
the economic impacts of the soil degradation, as
performed for soil erosion by Sartori et al. (2019).
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« Nature Restoration Law

Some indicators stipulated within the EU NRL di-
rectly relate to soil health: stock of organic carbon
in cropland mineral soils and share of agricultur-
al land with high- diversity landscape features.
Maximal complementarity to soil targets defined
for soil footprinting should be envisaged.

¢ Voluntary mechanisms

Voluntary compliance mechanisms such as the
Rainforest Alliance and the Roundtable on Sus-
tainable Palm oil already consider soil impacts
directly or indirectly as part of their commitment
to promoting sustainable agriculture and forestry
practices. Their experience should also be con-
sidered as a valuable input for EU footprinting,
and maximal usage of these and other voluntary
mechanisms envisaged.

*« UNFCCC LULUCF carbon accounting

The emission calculation and the mitigation po-
tential as currently used in the UNFCCC LULUCF
accounting has the potential to directly link CO2
emissions to land use changes.

Based on the more detailed priority knowl-
edge gaps defined above, following steps are
key to achieve before a detailed EU footprint as-
sessment on soils outside EU is possible:

e Develop a comprehensive mechanism for
food- and fibere product supply chain im-
pact assessment, that can link specific EU
imports to specific soils affected. Based
on this exercise, key commodities for more
detailed soil impact study can be select-
ed. This can be based on current efforts in
CBAM and EUDR to relate EU imports to re-
spective carbon emissions and deforesta-
tion. However, it is clear that also here, the
complex supply chains are considered as a
major critical challenge.

e Perform an assessment of soil impacts of the
priority imported food- and fibere products
on soils outside the EU. Hereto, a common
method for assessing footprint has to be
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developed, potentially based on a wide range
of existing soil footprinting standards, and on
the soil quality index as proposed by JRC.
Here, first specific study cases can be used
to identify key soil impacts to be assessed.

e Given recent drawbacks with the implemen-
tation of e.g. the EUDR, and e.g. the com-
plexity of extending the CBAM system to
agriculture through AGRI-ETS, it will be im-
portant to aim for both realistic short-term
ambition levels and more ambitious long-
term ambition. This accounts for both objec-
tives defined within the EU footprinting ob-
jective: establish the EU’s global soil footprint
in line with international standards, reduce
the impact of EU’s food, timber and biomass
imports on land degradation elsewhere with-
out creating trade-offs. A realistic pathway
forward could be to focus initial footprinting
only on key impact areas (e.g. priority knowl-
edge gap 1), focus only on key soil ecosys-
tem services and build on other initiatives
(cfr. priority knowledge gaps 2 and 3). Still,
long-term ambition has to remain high-lev-
el, with an accounting method that assesses
within EU impact and outside EU impact in a
similar way, building e.g. on the methodolo-
gy that will be defined in the SML.

5. We need to define spill-over effect
of EU Green Deal and other EU actions,
decisions, policy

Actions within the EU that influence consump-
tion patterns, soil stewardship, or trade relations
have the potential to impact the EU’s global soil
footprint. These effects manifest through chang-
es in value chains, traded biomass commodities,
or the possible relocation of production to non-
EU countries. An et al. (2024) have explored
the often-overlooked spillover effects between
‘green initiatives’ implemented concurrently. By
analysing 15 case studies across different coun-
tries worldwide, the authors identify both bene-
ficial and detrimental spillover effects, revealing
how one initiative can amplify or undermine an-
other’s outcomes. These findings underscore the
necessity for integrated and coordinated envi-
ronmental policymaking. Leveraging the spillover
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dynamics is crucial to enhance global conserva-
tion effectiveness, to minimize unintended harm,
and to align with sustainable development goals.

To avoid negative impacts of EU actions on
soils outside the EU, the Soil Mission acknowledg-
es the need for global alignment of the soil health
concept and actions to reduce and minimize the
soil footprint outside the EU from imports of food,
biomass, and timber. Zhong et al. (2024) further
underscore that the European Green Deal (EGD)
may inadvertently increase ecological harm by
driving demand for an additional 23.9 million hect-
ares of agricultural land outside the EU by 2030.
This underscores the need for coordinated global
policies to mitigate spillover effects. Keane et al.
(2024) highlight the risks of increased compliance
costs for developing nations, potentially limiting
market access and impacting trade competitive-
ness for least developed countries (LDCs). More-
over, ensuring that deforestation-linked imports
comply with stringent EU regulations introduces
barriers that must be addressed through tailored
capacity-building initiatives. Aligning the Soil Mis-
sion with broader international frameworks and
supporting traceability systems in LDCs will be
essential to minimize unintended ecological and
socio-economic consequences of EU actions.

At present, the other sub-objectives of the
Soil Mission primarily address specific actions
and knowledge gaps necessary to improve soil
health and awareness within the EU. In contrast,
the footprint objective consolidates diverse is-
sues such as soil erosion, carbon loss, soil seal-
ing, pollution, degradation, and other soil im-
pacts into a singular overarching goal for non-EU
impacts. This broad scope complicates the foot-
print objective, as any proposed actions under
other Soil Mission objectives (and by extension,
other SOLO TT initiatives) could potentially gen-
erate spillover effects on the EU footprint.

To address this complexity, a framework
must be developed to link EU soil and environ-
mental sustainability policies with their external
impacts. We argue that this framework should
build on other priority knowledge gaps. A robust
definition of the current footprint and a reliable
methodology to assess it are essential for devising
future actions to mitigate the footprint, both within
non-EU countries and within the EU itself (Fig. 1).
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Figure 1. Overview of TT priority knowledge gaps and actions.

Prioritization

During the SOLO stakeholder meeting in Sofia
(November 2024) and during an online consul-
tation with SOLO stakeholders, it was asked to
prioritize among these knowledge gaps.

This resulted in the following result, with in
total 222 votes submitted by 74 stakeholders
and SOLO project members.

1. Defining a harmonized footprinting method-
ology: 26,6% of votes;

2. Defining spill-over effects of EU actions and
policy: 22.5 % of votes;

3. Defining hot-spot impact regions: 20.3 %
of votes;

4. Assessing readiness of other footprinting
schemes for soil footprint: 15.8 % of votes;

5. Disentangle food-fibre impacts from other
impacts: 14.9 % of votes.

The prioritizsation shows that there is quite
a strong consensus among stakeholders that all
priority knowledge gaps are similarly important,
with the strongest priority given to defining a
harmonized soil footprinting methodology.

Roadmap table

Table 2 provides a roadmap overview and can be
found under Suppl. material 1
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Introduction

Soil is often overlooked despite being a crucial
component of the terrestrial environment. Peo-
ple often see it just as ‘dirt’ and as an exploitable
natural resource (European Commission, Direc-
torate-General for Environment 2021b). Moreover,
the soil was, and still is, not considered as rele-
vant as other key environmental components al-
though is one of the three fundamentals that en-
sure life on land: air, water and soil. What is hidden
is the significance of soils to people’s daily lives
and its key role in sustaining all life on dry land of
the Earth. The ‘dirt’ and ‘no value’ perception of
soil may contribute to the lack of public discussion
and appreciation of soils in public life, and, con-
sequently, a political reluctance to pass laws to

preserve and enhance soil health (EU Soil Obser-
vatory (EUSO) 2024). There is also little empha-
sis on soils in education, highlighting the need to
increase public awareness and societal engage-
ment in sustainable soil management and soil pro-
tection, which has an impact on soil literacy.

The Soil Mission Implementation plan un-
derstands soil literacy as both a popular aware-
ness about the importance of soil, and special-
ised and practice-oriented knowledge related to
achieving soil health. A more detailed definition
of what soil literacy entails is provided by John-
son et al. (2020), a combination of Attitudes,
Behaviours and Competencies required to make
sound decisions that promote soil health and ul-
timately contribute to the maintenance and en-
hancement of the natural environment.
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The EU Mission ‘A Soil Deal for Europe’ (Mis-
sion Soil) is one of five Missions funded under
the EU Research and Innovation (R&I) Programme
Horizon Europe. Its goal is to create 100 Living
Labs and Lighthouses by 2030 to promote sus-
tainable land and soil management in urban and
rural areas. The success of the Soil Mission de-
pends on response and action being taken by
society. However, the current low level of soil lit-
eracy is a major barrier to achieve significant soil
health improvements. Therefore, valuing soils as
part of all aspects of the environment and daily
life is key. This can be strongly supported by en-
abling the general public to have access to both
general education on soil and targeted training for
specialised needs (European Commission, Direc-
torate-General for Environment 2021b). However,
purely scientific information about soils in itself
will not trigger citizen action and involvement.
Rather, increased soil literacy has to connect
to people’s existing values, interests, and con-
cerns. While some messages may be widely at-
tractive (e.g., healthy soils underpinning achieve-
ment of physical and mental health, beautiful and
healthy landscapes, good quality food), soil liter-
acy should also be linked with specific and locally
relevant concerns and should empower citizens
to make a change (European Commission, Direc-
torate-General for Environment 2021a).

Despite its importance, little prior work con-
siders the conceptualisation and measurement
of soil literacy, as well as its components, which
could potentially lead to more informed and
conscious decision-making by citizens towards
healthier soils. Understanding the individual and
community drivers that motivate people to in-
teract with soil is crucial for informing policies
aimed at facilitating initiatives that promote hu-
man-soil interaction, such as those within farm-
ing communities (Johnson et al. 2023).

Based on the importance of the develop-
ment of soil literacy for the achievement of soil
health, the Think Tank (a body of experts provid-
ing advice and ideas on specific issues) focuses
its work in the identification of knowledge gaps
in research and development around this topic.
This document starts by highlighting the rele-
vance of soil literacy for the achievement of the
Soil Mission and the relation of the topic among
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the Think Tanks. In addition, the methodology
followed by the Think Tank for the identification
of members and the analysis of the knowledge
gaps is described, together with the current
state of the art of soil literacy.

Soil literacy in the context of
the Soil Mission

The Mission’s goal is underpinned by eight spe-
cific objectives, and each of those haves vari-
ous policy targets. The policy targets for the “In-
creasing soil literacy in society across Member
States” objective are:

T. 81: Awareness of the societal role and

value of soil is increased amongst EU citi-

zens, including in key stakeholder groups,
and policymakers.

e T. 8.2: Soil health is firmly embedded in
schools and educational curricula, to enable
citizens’ behavioural change towards the
adoption of sustainable practices both indi-
vidually and collectively.

e T 8.3: Citizen involvement in soil and
land-related issues is improved at all levels

o T 8.4:Practitioners and stakeholders have ac-

cess to appropriate information and training

to improve skills and to support the adoption
of sustainable land management practices.

Soil literacy is also heavily linked to one of
the four Soil Mission transversal-operational ob-
jectives: “Engage with the soil user community
and society at large”. The activities included in
this operational objective are:

e Activity 4.1: Foster soil education across
society

e Activity 4.2: Engage with and activate mu-
nicipalities and regions to design their own
strategies and actions for the protection of
soil health

o Activity 4.3: Engage with the private sector
and consumers to embed soil health in busi-
ness practices

e Activity 4.4: Strengthen soil health advice
and improve access to training for practi-
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tioners in line with Agricultural Knowledge
and Innovation Systems (AKIS)

o Activity 4.5: Create citizen-led soil
stewardship

 Activity 4.6: Bring soil closer to citizens’ values

Considering the importance of the soil liter-
acy topic within the Soil Mission, the Think Tank
focuses its work in the definition of the soil lit-
eracy term, identification of existing frameworks
and assessment of knowledge gaps related to
the topic. Additionally, it is important to consid-
er that, since soil literacy encompasses both the
understanding of soil science and the engage-
ment of the soil community and society at large,
the Think Tank’s activities intersect with those of
the other eight Think Tanks. This interconnection
between Soil Literacy and the other Think Tanks
is depicted in Fig. 1.

Scoping methodology for
knowledge gaps on soil
literacy

The Soil Literacy Think Tank started its work with
the identification of the relevant stakeholders,
followed by their engagement and discussions

KG2: Pathways linking
soil knowledge and

stewardship policymakers.

sing cultural and
social aspects to improve
soil health
communication o appropriate
information and training
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Figure 1. Soil Literacy and the Soil Mission.
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for the identification of knowledge gaps. In May
2023, a screening process was started by ICLEI
European Secretariat to identify potential stake-
holders working on the topic of soil literacy at EU
level. The stakeholders identified belong to the
four target group areas defined in the quadruple
helix model: research, governance, civil society
and businesses. By October 2023, nine stake-
holders had agreed to become members of the
soil literacy Think Tank (a group of experts on the
topic). The sail literacy Think Tank now comprises
members covering a broad range of backgrounds,
from soil researchers and university teachers to
environmental social scientists, soil consultants,
and communications experts. All the groups are
represented except for business/industry. The
Think Tank is designed to be dynamic and to grow
and change over the lifetime of the SOLO project,
therefore the screening process is ongoing and
recruitment to the Think Tank will remain open.
The first official online meeting of the soil
literacy Think Tank took place in October 2023,
during which Think Tank members and goals were
introduced. During this meeting the members
agreed that soil literacy is not well defined under
the Soil Mission, generating a challenge to iden-
tify gaps, bottlenecks, and activities to address
it. Based on this, the members decided to meet
again to have a brainstorming session around the

KG4:Inclusive soil
education across learning
needs
KG3:Incentives for
innovative soil teaching

KGEé:Influence of local
contexts on the
outcomes of citizen
science in soil health
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concept of soil literacy. This took place in Novem-
ber 2023 and was structured around the content
of several scientific papers suggested by the
Think Tank members. This information together
with the main discussion points is synthesised
in the present paper. Future steps might include
discussions around the educational part of soil
literacy, based on the collected resources and
the feedback received during the review process.

Additionally, during the SOLO project con-
ference in Barcelona in November 2023, the soil
literacy Think Tank leaders had the opportunity
to interact and discuss the preliminary results
in a round table format with members from the
other SOLO Think Tanks. The inputs collected
during this session have also been included in
this scoping document.

In 2024, desk research of several papers
took place. The main objective of this desk re-
search iwas the identification of research and
innovation knowledge gaps related to soil liter-
acy. As a secondary objective, this review also
collected information on the actions and bottle-
necks mentioned in the records related to the
research and innovation knowledge gaps.

The process began on the 22nd of May of
2024 with a comprehensive search for relevant
literature using Publish or Perish software, which
facilitated the retrieval of academic papers from
Google Scholar. The removal of duplicates was
performed automatically by the software. The
search was performed using a predefined search
string (based on the concept of soil literacy):

« “soil” AND (“literacy” OR “capacity building”
OR “training” OR “perception” OR “values”
OR "“awareness” OR “engagement” OR “ed-
ucation” OR “citizen science”)

and inclusion criteria:

« English language (the language ICLEI team
members can understand)

o Open access

o Papers from 2010 ongoing

o Specifically related to the topic of soil litera-
cy, based on the search string terms ensur-
ing the relevance of the selected studies to
the research objectives.
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The screening process was divided into four
stages:

1. Identification: A total of 898 records were
identified from the Google Scholar data-
base using Publish or Perish software.

2.Screening: 252 of the records, roughly
the 30%, were screened based on title and
abstract relevance. The remaining 646 re-
cords will be screened in 2025.

3. Eligibility: Following the initial screening, 64
full-text articles were assessed for eligibility
against the inclusion/exclusion criteria.

4.Included: Finally, 23 studies were includ-
ed in the analysis forming the basis for the
findings in terms of research and innovation
knowledge gaps, actions and bottlenecks.

This analysis was supplemented with on-
line meetings with the Think Tank members to
cross- check the relevance of the found re-
search knowledge gaps. For Think Tank mem-
bers who could not attend the online meeting
in July 2024, a gGoogle survey was shared
with a list of the identified knowledge gaps so
they could also share their impressions. This
feedback was considered to cluster or rename
several of the knowledge gaps. Together with
the in-person meeting in Sofia, Bulgaria, all the
conversations provided highly relevant sug-
gestions to the initial list, ending up with a total
of 18 knowledge gaps, methodology present-
ed in Fig. 2.

2. State-of-the-Art

2.1 Current state of the
knowledge on soil literacy

Defining the meaning of soil is a ‘complex mat-
ter. As it is complex to define “soil health” and
“soil literacy”.

Within soil science, the definition of the
above terms have changed over time. Beyond
the field of soil scientists, different groups have
different understandings of what soils are. The
way in which soils are known, represented,
and understood is diverse. In different regions,
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Figure 2. Soil Literacy Think Tank work-flow.

farmers, foresters, government officials, soil re-
searchers, or environmental NGOs know soil in
different ways, and attach different meanings to
them (Granjou and Meulemans 2023).

There is also the historic context of how soil
science has emerged and developed as a topic
seeking relevance within the scientific commu-
nity and governance spheres over the past one
hundred years, which adds another level of com-
plexity to the discussion. Accounts of the history
of soil science usually locate the origins of the
discipline in the late 1800 with Vasiliy Dokuchaev
(Rusakova et al. 2022), then first internation-
al soil science congresses and conferences in
1909, 1924, and 1927 (KEEN 1927). Based on
Dokuchaev’s work, Hans Jenny developed in
the 1940’'s a conceptual model of soil formation
factors. In the early 1900’s soil related concepts
started developing and being published, such
as Soil fFertility, Soil Productivity and Soil Con-
servation. Before the 1970’s soil knowledge was
mainly related to agricultural practices, as tech-
nologies started developing (e.g., mechanization,
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chemicals, modified plant crops, namely the “first
green revolution” Melillo 2012), there was a shift
in this concept. This shift can also be reflected in
the appearance of concepts like soil quality and
soil protection in the 1970’s (Mizuta et al. 2021).
As a result, soil science entered a period of legit-
imation crisis, which extended until around 2010
in connection with the discourse on soil carbon
and climate change. Soil science has re-articu-
lated its relevance in 5 different epistemic com-
mitments along the years (Sigl et al. 2023):

1. Communicating to policymakers, to find
new ways to convey existing soil science
knowledge to policymakers.

2. Internationalising soil science knowledge, to
create international bodies of soil science
knowledge with a broad geographical scope.

3. Rethinking soil science research by using
boundary concepts, soil scientists started
using concepts like ecosystem services,
policy cycle, or soil health to improve com-
munication, interaction, and collaboration
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beyond traditional and agrocentric soil sci-
ence (creation of soil ecology).

4. The ecosystem approach in soil-related
research, an approach that studies soils as
part of broader ecosystems with the aim
to understand interactions within and be-
yond soils.

5. Developing regional scenarios for (agri-
cultural and rarely forest and urban) soil
management, the goal is to use soil man-
agement as a mean to tackle societal and
environmental problems without losing
sight of other soil functions and ecosystem
services, such as local food production or
regional economic functions.

In accordance with these epistemic com-
mitments, it can be observed that in the 1990’s
new concepts like soil sustainability, resilience
and health were introduced. While the concept
of soil security did not appear until 2013 (Mizuta
et al. 2021).

The following figure summarizes the evolu-
tion of soil science, soil concepts and the epis-
temic commitments in a timeline Fig. 3.

As mentioned before, by “soil literacy”
the EU Soil Mission recognises both a popular
awareness about the importance of soil, as well
as specialised and practice-oriented knowledge
related to achieving soil health (European Com-
mission, Directorate-General for Environment
2021a). By doing so, the Soil Mission seeks to
establish a strong link between soil literacy and

1800’s 1910’s 1940’s 1965 1970’s

soil health. However, the main problem is that the
lack of a consistent understanding of what soll
is leads to complexities in defining soil health,
which in turn influences the development of a
concept for soil literacy.

The term “soil health” has a broader meaning
and should be considered as an ‘umbrella’ term
incorporating many different dimensions beyond
ecosystem services and human health. According
to the proposal for a Soil Monitoring and Resilience
directive, soil health means the physical, chemical,
and biological condition of the soil, determining its
capacity to function as a vital living system and to
provide ecosystem services (European Commis-
sion, Directorate-General for Environment 2023).
This definition only relates to the functional part of
the soils and obscures the different understand-
ings and contexts that offer the great diversity of
what soil health may be. The definition needs to
consider how it relates to different Sustainable
Development Goals (SDGs) and other environ-
mental and socio-economic factors. In that sense,
the soil literacy Think Tank agrees on the need to
expand the soil health concept beyond the an-
thropocentric idea related to ecosystem services.
It advocates for recognizing soil as a living com-
munity from which humans benefit and which they
nourish. For example, ‘Soil health means the phys-
ical, chemical and biological condition of the soil
determining its capacity to function as a vital living
system and to provide ecosystem services under
different environmental and socio-economic driv-
ing forces.... This paradigm shift would involve
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moving from a purely anthropocentric utilitarian
approach to one that is ecocentric and deonto-
logical, attributing inherent value to all soils.

As mentioned before, soil science has
moved from a very local and regional perspec-
tive in which the main target of sail literacy were
farmers, foresters and landowners, to a more
global perspective that tries to tackle several en-
vironmental and societal challenges, and where
it deals with different target audiences. Until
relatively recently, there has been a linear pro-
cess between researchers/policymakers/public,
in which the sciences are seen as the source of
knowledge about the soil which needs to be act-
ed on by others, such as policymakers or farmers.
The linear model assumes that the main group
with knowledge on how soils should be managed
are the scientists. However, awareness of the val-
ue or importance of soil already exists amongst
other different target audiences who observe soil
and land degradation taking place. For instance,
community-led initiatives (CLIs) challenge this
linear model by integrating traditional ecologi-
cal knowledge, local practices, and experiential
learning. Through grassroots networks, CLIs ex-
pand soil literacy beyond academic and agricul-
tural contexts, offering diverse, place-based per-
spectives that enrich both formal education and
policy development (Penha-Lopes 2019).

From all of this, we can conclude that
there is not a singular soil health idea to trans-
fer in soil literacy. But rather, due to the differ-
ent viewpoints and management priorities of the
target audience, there needs to be an adaptive
approach to soil literacy, respectful of multiple
perspectives and sources of knowledge. For in-
stance, soil literacy for a farmer might be more
practical with strong relational values, for people
living in metropolitan areas, soil literacy might be
linked to urban sustainability practices.

The lack of soil literacy might not only be
limited to citizens, youth, students or farmers,
but also extend to policymakers or planners
for example. The Think Tank’s preliminary desk
research did not yield many results related to
studies on the current status of soil literacy, or
linked topics such as soil awareness raising, in
Europe. This can already indicate that further re-
search in the field is needed. Nevertheless, it is
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worth mentioning the work already done by soil
networks like the Global, European and subre-
gional Soil Partnerships on soil awareness and
capacity building, including their collection and
production of soil awareness raising and edu-
cational materials and the events they organise.
Similarly, European projects such as LOESS, Hu-
MUS, PREPSOIL, CURIOSOIL, ECHO, Links4Soils
and NBSOIL work to collect the best policies and
practices around soil health, and soil-related
training and courses that are relevant for build-
ing the basis of knowledge around soil literacy.
As relevant are the outcomes of over 18f projects
under the EU LIFE programme between 2012 and
2019, see LIFE Soil Ex- Post Study - Final Report
(Giandrini 2023).

Case studies outside of Europe may also
serve as examples of soil literacy assessment.

For example, a soil literacy survey was con-
ducted (Johnson et al. 2023) among a popula-
tion of 3661 school children aged between 13-15
years in three African countries, Ghana, South
Africa and Zimbabwe to measure their ‘Attitudes,
Behaviours and Competencies’ to soil, which
they termed ‘ABC’. The survey showed that al-
though students were generally equipped with a
good attitude to (overall 52% positive) and be-
haviour towards soil (overall 60% engagement),
they had little competency as to how to improve
soil health (overall 23% knowledge). For exam-
ple, less than 35% of respondents across all
countries knew that soil is living. And less than
13% of students were aware of the important
role of soil in climate change mitigation.

The study is supported by The ABC of Soil
Literacy Report from the University of Durham
(Johnson et al. 2020), which, as mentioned at
the beginning of this document, provides a first
definition of what “soil literacy” entails: a combi-
nation of Attitudes (Heart), Behaviours (Hands)
and Competencies (Head) required to make
sound decisions that promote soil health and ul-
timately contribute to the maintenance and en-
hancement of the natural environment (Fig. 4).
Through acquired knowledge, people can de-
velop the right attitudes, behaviours and com-
petencies, improving soil management practices
and interactions, thus increasing soil health. Ad-
ditionally, the report offers approaches to mea-
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Q Competencies

Behavior

“TRIPLE H: HEART-HANDS-HEAD"”

Figure 4. Components of soil literacy emphasizing the
ABC (Attitudes, Behavior, Competencies; (Johnson et al.
2020)). Heart in relation to feelings-values, Hands in rela-
tion to action- management and Head in relation to abili-
ties-capacities.

sure soil literacy levels targeting school children
in three African countries. This is done through a
soil literacy toolkit including a survey question-
naire, guidance on how to select samples of the
target population, and advice on preparing field-
work teams.

2.2 Recommendations for
soil literacy

Soil literacy should seek to contribute to the cre-
ation of a new form of moral agency (concern for
soil or soil stewardship) which would foster vol-
untary action (care for soil) and the implementa-
tion of mandatory and clear measures to secure
soils (soil protection). A promising pathway for
this is through linking responsibility for soils with
already articulated governance objectives, such
as reducing carbon emissions, ensuring food se-
curity, securing a functional environment, and/
or land take limitation (Krzywoszynska 2023). A
systemic and holistic approach to soils ensures
a robust soil literacy by acknowledging the in-
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terrelation between soil and other crucial areas
such as water management, circular economy,
biodiversity, land use, and human and environ-
mental health. As such, healthy soils are capa-
ble of providing a number of ecosystem services
that support the achievement of the SDGs, and
enhancing health. For instance, the One Health
concept defined by the World Health Organisa-
tion (an integrated, unifying approach that aims
to sustainably balance and optimize the health
of people, animals and ecosystems) can be in-
strumental in establishing a connection between
human health, biodiversity, and environmental
health, encompassing soil.

We need to understand that most peo-
ple already have knowledge of soils and about
soils, although this knowledge may be different
to scientific understanding. We also need to
acknowledge that different forms of soil knowl-
edge, and different levels of soil knowledge,
exist unequally among the different groups
and decision makers whose actions have direct
or indirect impacts on soil health. Soil literacy
should build upon this pre-existing knowledge
and values around soils and find ways to build
on actions which can lead to “healthy soils”
in a just and equitable manner. In this sense,
a care network model can play a key role, in
which an initial attentiveness to one aspect of
soils leads to a further attentiveness to other
interconnected aspects. For example, farmers’
attentiveness to soil structure can lead to an
attentiveness to soil biota, and result in chang-
es to land management practices so that the
needs of soil biota are respected. Attentive-
ness can thus have a transformative effect
on human-soil relations, leading, for example,
to a questioning of models of land use which
neglect the needs of soil organisms (Krzywo-
szynska 2023). In terms of engagement, when
developing effective soil literacy programs,
it is recommended to integrate lessons from
sustainability-focused communities as well as
locally/regionally relevant knowledge on soils,
landscape, land use, etc. Embedding such
practical, community-based learning models
into soil literacy initiatives can foster a deeper,
hands-on understanding of soil health.
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In this sense, the Fifth National Climate As-
sessment - the US Government’s pre-eminent
report on climate change impacts, risks, and re-
sponses - indicates a series of processes and
actions to improve the effectiveness of engage-
ment efforts and accessibility to climate infor-
mation (Marino 2023). These can also be applied
to soil literacy:

1. Co-produced or co-created research is a
promising approach for soil literacy. This
type of research defines non-scientific in-
dividuals as experts within their specific
context, integrating community-based and
scientific insights and solutions. Howev-
er, integration can fail if power dynamics,
goals, trust, and compensation within re-
search teams and epistemologies are not
equitable.

2. Establishing clear, measurable objectives
with well-defined benchmarks or desired
outcomes leads to more effective commu-
nication products and processes; bringing
key stakeholders into the process at this
early stage can improve effectiveness.

3. To inform real-world decision-making, infor-
mation needs to be calibrated to the needs
of target audiences; importantly, communi-
cating relevant information sometimes in-
volves translating science into understand-
able, accessible and actionable language,
whereas in other cases it involves incor-
porating diverse forms of knowledge into
communications products and efforts.

4. Efforts that have been successful in engag-
ing people on climate change across exist-
ing ideological and cultural divides generally
do so by addressing the things people care
about most (this links to the care network
model mentioned in previous paragraph).

5.Including intended target audiences
throughout the process of developing com-
munication products both promotes proce-
dural justice and increases the likelihood
that such efforts meet shared goals.

6. Engagement outcomes also strongly reflect
the relationships and levels of trust between
intended audiences and messengers. The
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use of trusted messengers increases ac-
ceptance and use of climate change risk
information.

7. Pervasive uncertainty surrounding climate
change continues to be a major challenge
to communication (in our case soil health).

Finally, soil literacy should be addressed/
considered at multiple scales and differentiate
between sectors, disciplines, priorities, and age
groups. One example of how this could be ac-
complished comes from the concept of ‘Learn-
ing for Sustainability (LfS)’ education or Educa-
tion for Sustainability (ESD). The work is based
on the green competence framework from the
JRC's GreenComp document (Bianchi et al.
2022). The JRC defines 12 broad competence
areas clustered on different knowledge, skills
and attitude levels. Merging both competence
frameworks with the European Green Deal (e.g.,
Farm to fork strategies), different competence
areas were developed, starting from a primitive
level of knowledge, skills, and attitudes to more
advanced concepts. The Horizon Europe proj-
ects GreenSCENT and ECA4Clim have contrib-
uted to the further refinement, expansion, and
enhancement of the Green Competence Frame-
work (GreenComp). GreenSCENT broadened the
framework by aligning all competencies with the
pillars of the EU Green Deal, ensuring a compre-
hensive approach to sustainability. Meanwhile,
ECA4CIlim employed a multidisciplinary, transdis-
ciplinary, and participatory process to develop
and validate a European Competence Frame-
work (ECF) for transformative change. These
efforts have strengthened the applicability and
relevance of GreenComp, supporting its role in
fostering sustainability competencies across
sectors like soil.

If some competence areas can be delin-
eated, a target audience could then be seg-
mented by age, interest, educational back-
ground, roles and values e.g., kindergarten,
schools, youth (university, experts) or public
officers. The focus would be on creating com-
petence-based and not just content-based
curricula and training programmes following a
progressive multi-level approach which can be
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presented in a way to highlight the multidisci-
plinary nature of the issue and the multidimen-
sional nature of solutions.

In summary, achieving soil health depends
on the context and needs of the actors involved.
There is not “one state” of soil health knowledge
that we can achieve, but there is a common basic
knowledge that can be shared. Additionally, the
definition of soil care is necessary to achieve a

[ comosv | [ sowumeracy |

Figure 5. Awareness-to-action continuum for soil health.

3.1 Prioritization of
knowledge gaps

societal shift in attitudes, behaviour and compe-
tencies, which should include all actors coming
from different backgrounds. Fostering soil care
can begin with sparking curiosity and raising
awareness among all actors, encouraging them
to seek knowledge and enhance soil literacy.
This, in turn, supports landowners and managers
in implementing and justifying sustainable prac-
tices that improve soil health (Fig. 5).
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Table 1. Ranking of the top 10 knowledge gaps identified (a full list of all identified knowledge gaps is given in section 3.3).

Rank Knowledge gap Type of knowledge gap

1

Further research is required to develop and validate frameworks that integrate soil as core component into Education
for Sustainable Development (ESD) competence models.

More research is needed in understanding the ecosystem services delivered by different soil types for key actor

Knowledge Application Gap

2 . L. K ledge D | t G
groups to improve targeted communication. nowledge Development &ap
More research is needed in evaluating the effectiveness of outreach efforts aimed at engaging primary and
3 secondary school students, as well as the general public, in soil health topics and their impact on attracting new Knowledge Development Gap
students to university-level soil health programs.
More research is needed to promote understanding of the key factors that enable and/ or prevent foresters,
4 farmers, urban planners, civil engineers and other actors to consider soil health and to adopt soil conservation Knowledge Development Gap
practices.
More research is needed on the development of effective pedagogical strategies to foster a deeper understanding
5 of soil's importance. These strategies should promote critical thinking and be state-of-the-art, hands-on and Knowledge Development Gap
experiential.
More research is needed in fostering the connection between soil science knowledge and soil stewardship. Instead
6 of focusing on why the gap exists (soil stewardship paradox), studies should explore how, where, and when soil Knowledge Development Gap
knowledge contributes to responsible soil care.
7 More research is needed in assessing how local conditions affect the long-term success of citizen science Knowledge Develooment Ga
initiatives in soil health, in terms of scientific data collection and public education goals and other outcomes. 9 P P
More research is needed in improving soil health communication strategies that prioritise cultural and social aspects s
8 S R Knowledge Application Gap
of soils significant to diverse actors.
9 More research is needed to identify the key factqrs that stlmulat'e |nstrut?tors to adopt new and inspiring teaching Knowledge Development Gap
methods with regard to soil education.
More research is needed in creating educational materials tailored to different educational levels and -
10 . X . Knowledge Application Gap
neurodivergent people to encourage student interest, curiosity and engagement.
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4. Roadmap for Soil

Literacy Think Tank

4.1 Key knowledge gaps

1. Further research is required to
develop and validate frameworks
that integrate soil as core compo-
nent into Education for Sustainable
Development (ESD) competence
models.

Living soil can be used as an entry point to the
five principles of sustainability education. The first
principle, related to the valuing of biocultural diver-
sity, draws a parallel between the vast biodiversity
within soil and cultural and social diversity among
human communities. By respecting and protecting
soil, we can better appreciate the balance neces-
sary to sustain biocultural diversity, fostering a
deeper connection to the interdependence of life.
The second one is related to the sensitiszing of all
the senses. This emphasiszes the importance of
engaging all the senses in the learning process. It
uses soil as a metaphor of the value of ancestral
knowledge and the understanding of soil through
direct interaction and experimentation. The third
principle, “Recognising place”, highlights the need
for contextualized learning in sustainability educa-
tion. Soil provides an ideal lens to explore place-
based factors, including geographical, historical,
ecological, and cultural dimensions. These con-
siderations help ground sustainability education
in the unique characteristics of each environment,
promoting a localized understanding of global
challenges. The fourth one is “cultivating inter-
connectedness”, in which soil reveals the intricate
relationships between microorganisms, plants,
animals, and abiotic elements, demonstrating the
interconnectivity that underpins ecological bal-
ance. By studying soil, learners can develop a ho-
listic perspective on the interconnected systems
that sustain life on Earth. Finally, the fifth principle
is the embracing of practical experience. The use
of hands-on approaches in education can foster
positive environmental behaviors and help the
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creation of meaningful bonds and values in rela-
tion to soil and other related environmental factors
(Williams and Brown 2011).

Additionally, soil plays a key role in sus-
tainable development and education. Soil health
is an integral factor to address a wide range
of topics, including public health, poverty, dis-
placement, inequality, biodiversity loss, water
retention capacity, carbon sequestration and
climate change. To tackle these interconnected
challenges, sustainability education must adopt
an interdisciplinary and innovative approach that
emphasizes soil's essential role in ecosystem
services. As a fundamental resource, soil is also
key to achieving the Sustainable Development
Goals (SDGs) (Reyes-Sanchez 2024).

Despite the importance of soils, knowledge
on different soil processes remains disconnected
across various disciplines. This lack of integra-
tion hampers the development of comprehen-
sive strategies for sustainable soil management.
Research must prioritize the multifunctionality of
soil health, examining its connections to major
global challenges such as agricultural produc-
tion, land use management, biodiversity conser-
vation and climate change. Addressing soil deg-
radation requires understanding the human and
natural factors driving soil degradation in terms
of erosion, salinization, deforestation, industrial
pollution, and unsustainable farming practices.

Advancing soil literacy requires interdisci-
plinary and innovative educational practices that
emphasisze the critical role of soil in sustainabil-
ity. It is essential to train scientists and educa-
tors to effectively communicate the importance
of soil across all levels of education, fostering a
broader understanding of its value. Moreover it
is necessary to recognize the complexity of soil
science and the need to integrate it with other
disciplines to create more comprehensive and
cohesive educational frameworks. This will fos-
ter a more holistic understanding of soil’s role in
sustainability (Johnson et al. 2020).

Related Questions:

e How can soil as a core component be ef-
fectively integrated into interdisciplinary
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educational frameworks to teach sustain-
ability concepts across diverse educational
settings?

2. More research is needed in
understanding the ecosystem
services delivered by soils for key
actor groups to improve targeted
communication.

Soils are essential for maintaining ecosystem
functions critical to human well-being, such as
nutrient cycling, water filtration and carbon se-
questration. However, despite their importance,
there is a significant lack of knowledge among
key social actors regarding the services provid-
ed by soils. Brevik et al. (2022) highlight that
understanding the link between soil health and
human life is critical to promoting sustainable
soil management practices. They suggest that
effective soil education programmes tailored
to specific groups can help bridge this gap by
demonstrating the tangible benefits of healthy
soils. Increasing public and policy-maker aware-
ness of the vital role that soils play is fundamen-
tal to the implementation of effective soil man-
agement strategies.

Psychological barriers often prevent indi-
viduals from adopting pro-environmental be-
haviours. According to Kollmuss and Agyeman
(2002), factors such as lack of environmental
awareness, social norms and a sense of alien-
ation from nature contribute to this gap between
knowledge and action. These barriers can be
particularly challenging when communicating
the importance of soil health, as people may not
recognise the direct impact of soil degradation
on their daily lives. Krasny and Tidball (2012)
highlight the potential of community-based ed-
ucation and participatory approaches, such as
urban gardening and soil restoration projects,
to overcome these barriers. These initiatives
not only educate participants, but also foster a
deeper connection to the environment, which is
essential for promoting long-term sustainable
behaviours. Additionally, Hallett et al. (2017) em-
phasise the importance of using innovative tools
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such as social media, storytelling and interactive
apps to engage diverse audiences and effective-
ly communicate the value of soils.

With the increasing focus on the United Na-
tions Sustainable Development Goals (UNSDGs),
soils are becoming a key topic. Understanding the
functions of soil is important for addressing glob-
al challenges and promoting sustainability Keess-
tra et al. (2016). However, research is still needed
to further explore the knowledge gaps related to
soil services supplied to different societal groups.
As indicated by Brevik et al. (2022), there is an
opportunity to reevaluate and redesign soil cur-
ricula by focusing on soil functions instead of the
conventional emphasis on soil properties. This
approach would prioritise the practical roles soil
plays in ecosystems and human systems, fos-
tering a deeper understanding of its applications
and value. However, this needs to be acompanied
by an analysis of the current level of soil literacy
in different sectors, such as agriculture and urban
planning, for developing targeted education pro-
grammes and communication campaings.

Related Questions:

e How do soils contribute to ecosystem ser-
vices relevant to key actor groups, and how
can these benefits be effectively commu-
nicated to enhance awareness and deci-
sion-making?

3. More research is needed in
evaluating the effectiveness

of outreach efforts aimed at
engaging primary and secondary
school students, as well as the
general public, in soil health topics
and their impact on attracting new
students to university-level soill
health programs.

The need for research to evaluate the effec-
tiveness of outreach efforts aimed at engag-

ing primary and secondary school students, as
well as the general public, in soil health topics

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Author Name et al.: Outlook on the knowledge gaps related to soil literacy

is becoming increasingly urgent. Soil health is
fundamental to agricultural productivity, eco-
system services, and climate change resilience,
yet it remains poorly understood by the general
public and is often underrepresented in formal
education systems. This disconnect is especial-
ly concerning as soil degradation continues to
accelerate in many parts of the globe, with sig-
nificant social and environmental consequenc-
es. Outreach programs offer a potential remedy,
but their impact on raising awareness, changing
attitudes, and influencing academic and career
aspirations in soil science has not been compre-
hensively assessed.

In broader science education, outreach ini-
tiatives have demonstrated measurable success
in enhancing engagement and academic inter-
est among students. For instance, programs like
“Shadow a Scientist” and “Present Your PhD The-
sis to a 12-Year-Old” have been shown to boost
students’ enthusiasm for science, enhance their
understanding of complex concepts, and foster
interest in pursuing related academic pathways.
Such initiatives also provide a two-fold benefit
by improving the communication skills of partici-
pating scientists (Clark et al. 2016).

However, despite these proven models in
other fields, soil science has not fully leveraged or
evaluated similar outreach strategies. Research
into the specific outcomes of these programs
could offer valuable insights into best practices
for enhancing soil literacy and engagement.

The importance of addressing this gap is
highlighted by the declining enrolment in soil- re-
lated university programs globally. Sources such
as Havlin et al. (2010) and Collins (2008) discuss
the systemic challenges facing soil science ed-
ucation, including outdated curricula, insuffi-
cient public engagement, and the low visibility
of soil-related careers in primary and secondary
education. For example, Havlin et al. emphasize
the importance of curricular revisions and tar-
geted outreach in reversing enrolment declines,
citing successful initiatives at institutions like
California Polytechnic State University, where
program updates led to a notable increase in
student enrolment. Collins highlights the broad-
er, national, and international scale of this issue,
highlighting how declining undergraduate num-
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bers weaken graduate programs and reduce the
influx of professionals into soil science careers.

In conclusion, targeted research addressing
this knowledge gap is essential for advancing
soil literacy. Such studies would provide evi-
dence-based guidance for designing outreach
programs that effectively engage young learners
and the general public while inspiring interest in
soil-related careers.

Related Questions:

e What is the long-term impact of soil health
outreach programs on primary and second-
ary school students’ interest in pursuing soil
science or related university- level education?

4.2 Prioritized knowledge
gaps

e More research is needed to find suitable
means to promote understanding of the key
factors that enable and/or prevent forest-
ers, farmers, urban planners, civil engineers
and other actors to consider soil health and
to adopt soil conservation practices.

A better understanding of the factors that
lead soil actors to adopt soil, land and water
conservation practices is critical for the devel-
opment of successful interventions to promote
sustainable soil management practices. Mango
et al. (2017) provide a comprehensive analysis of
such factors in the Chinyanja Triangle region of
Africa. The study shows that factors such as the
age and education level of the household head,
agricultural extension and membership of farmer
groups are critical to awareness and adoption of
conservation practices. These findings suggest
that social inclusion and knowledge transfer play
a central role in motivating soil actors to adopt
soil conservation practices. In Europe, Fantappié
et al. (2020) emphasise that economic and op-
erational benefits - such as productivity increas-
es and cost reductions - are key drivers for the
adoption of soil conservation practices. In Sicily,
farmers who perceived management benefits
were more likely to perceive positive environ-
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mental benefits, suggesting a close link between
economic efficiency and environmental aware-
ness. Lavergne et al. (2024) draw attention to
another important issue: the under-representa-
tion of studies on the global South, particularly
on environmental issues. This knowledge gap
could affect the development of global solutions
to soil degradation if certain regions are not suf-
ficiently included. Furthermore, Charzynski et al.
(2022) highlight the need for educational pro-
grammes to focus more on concrete solutions
to soil degradation problems in order to create
a deeper awareness and commitment to sus-
tainable practices among farmers. This suggests
that both cultural and practice-based approach-
es are needed to promote the adoption of sus-
tainable soil conservation measures.

Nonetheless, soil degradation is a multifac-
eted problem, influenced by activities in many
sectors, including urban development, forestry,
infrastructure construction and industrial activi-
ties. For example, urban expansion is a growing
threat. Research by Barbero-Sierra et al. (2013)
highlights that “urban sprawl in peri-urban areas
leads to the fragmentation of fertile soils, reduc-
ing their productivity and ecological functions”.
This is of particular concern, as urban settle-
ments often expand into areas of high soil fertil-
ity, making “urban sprawl the most active agent
of desertification in Spain”. Soil sealing - cover-
ing soil with impermeable materials for roads,
buildings and other infrastructure - is one of the
most devastating threats to soil ecosystem ser-
vices, effectively halting critical functions such
as water filtration, carbon sequestration and nu-
trient cycling.

Unsustainable forestry practices, such as
clear-cutting, contribute to soil erosion, loss of
organic matter and disruption of soil structure,
increasing the risk of landslides and reducing
biodiversity. According to Pimentel and Kounang
(1998), “deforestation and poor land manage-
ment practices accelerate soil erosion rates, of-
ten beyond the natural regeneration capacity of
the soil”.

The effects of industrial pollution are also
critical. Research by Nagajyoti et al. (2010) shows
that “heavy metal contamination from industrial
activities leads to deterioration of soil microbial
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activity, nutrient cycling and plant productivity,
resulting in long-term soil degradation”.

Given these multiple threats, it is essential
to adopt a holistic approach to soil protection
that addresses the drivers of soil degradation
across all sectors. This includes not only pro-
moting sustainable agricultural practices, but
also promoting sustainable urban planning, re-
sponsible forest management and the devel-
opment of green infrastructure to mitigate soil
sealing, erosion and pollution. By broadening the
focus of key factors that enable and/or prevent
soil protection efforts, we can more effectively
safeguard soil health as a critical resource for
environmental resilience, climate regulation and
human well-being.

Related Questions:

1. What socio-economic and cultural factors
influence and prevent the adoption of soil
conservation practices by farmers and oth-
er stakeholder groups?

2. How can education be adapted to promote
and enable the adoption of sustainable
practices?

e More research is needed on the develop-
ment of effective pedagogical strategies to
foster a deeper understanding of soil's im-
portance, promoting critical thinking and be
state-of-the-art, hands-on and experiential.

In addition to the lack of integration of soil
science and management practices within the
educational curricula, traditional teaching ap-
proaches are often relying on passive learning
methods that primarily involve receiving in-
formation without active participation and are
only able to provide basic knowledge. These
approaches fail to develop critical thinking and
problem solving skills in students, which are re-
quired to understand and address the complex-
ity of soil related issues and processes (Amador
2019). The complexity of soil science derives
from the need to understand the interaction of
the different components like atmosphere, bio-
sphere, hydrosphere, lithosphere, ecosphere
and anthroposphere, requiring students and
practitioners to have the knowledge to under-
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stand these interactions, while also possessing
the skills to collaborate across the various dis-
ciplines (Al-Ismaily et al. 2023). Therefore, the
study of soil science requires contextualised,
holistic, practical and experiential learning ap-
proaches centred around living soil as a way to
foster a deeper ecological understanding and
improvement of sustainability literacy (Williams
and Brown 2011).

Practical and hands-on experience in soil
science teaching can be understood in two ways:
The first one refers to more practical approaches
in the learning process of students, focusing on
innovative pedagogical techniques like Problem
Based Learning (PBL), Soil Skills (SSK) or Soil
Judging Contest (SJC). The second approach
focuses on more experience based and hands-
on methods, in which students get the oppor-
tunity to directly observe and interact with soil.

As well, inquiry-based learning approaches,
such as Soil Skills (SSK) and Soil Judging Contest
(SJC) can enhance the engagement of students,
creating dynamic learning environments. SJCs
are a program based on competition, teams will
evaluate soil properties and features (e.g. soil
texture, structure, color) and make informed
judgements based on their knowledge and ob-
servations. While, in the case of SSK, students
have to address real case studies by applying
interdisciplinary approaches, considering the re-
lations between soil, water, landscape and com-
munity to solve problems (Al-Ismaily et al. 2023).

Moreover, the use of hands-on and interac-
tive activities with soil has an advantage, as ex-
periences associated with unstructured activity
in a natural setting can positively influence envi-
ronmental behaviour and can produce meaning-
ful relationships with nature and the environment,
especially for children (Williams and Brown 2011).

This can also be implemented through proj-
ect based learning approaches like fieldwork or
field trips, including soil sampling and measuring
of parameters, which generates higher levels of
student engagement and a better understanding
of soils as an ecosystem component and how it
can be related to other disciplines (Aran 2024).
The use of practical and interactive experience
approaches can further foster awareness and
understanding of the value of sail, increasing soil
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stewardship (Williams and Brown 2011). Studies
indicated that early interaction with natural en-
vironments plays a crucial role in shaping social
engagement, well-being, and lifelong connec-
tions with nature. Children who regularly expe-
rience nature tend to be more active, engage
more with their communities, and develop higher
self-esteem and resilience to stress. These ben-
efits extend into adulthood, fostering continued
participation in social and environmental initia-
tives (Hartig et al. 2014).

Related Questions:

1. What pedagogical strategies can be inte-
grated to improve the understanding of
soils in different age group students?

2. How can pedagogical strategies be adapt-
ed depending on students/ schools location
(students from urban or rural areas, living
near mountains or plains, agricultural prac-
tices around them..?

3. What isi the place of soil in the holistic ap-
proach of environmental (and socio-eco-
nomic) undertanding?

e More research is needed in fostering the
connection between soil science knowledge
and soil stewardship. Instead of focusing on
why the gap exists (soil stewardship par-
adox), studies should explore how, where,
and when soil knowledge contributes to re-
sponsible soil care.

There is a growing need for research that
bridges the gap between soil science knowl-
edge and soil stewardship. The idea of “stew-
ardship” involves the conscientious and respon-
sible management of resources entrusted to
one’s care. In this sense, a mix of factors such as
socio-economic conditions, policy frameworks,
cultural perceptions, and education systems
play significant roles in determining whether
knowledge is translated into action (Prager and
Posthumus 2011).

The study by Neaman et al. (2024) points
out that agricultural professionals, particular-
ly those with academic or urban backgrounds,
may possess extensive technical soil knowledge
without a corresponding level of care for soil
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health. This disconnect calls for further research
to clarify the relationship between knowledge
acquisition and stewardship behaviours. As well,
studies on environmental knowledge and be-
haviour, such as those by Kollmuss and Agyeman
(2002), illustrate this “knowledge-action gap”
across environmental fields. They suggest that
psychological, social, and contextual factors
heavily influence whether knowledge trans-
lates to stewardship behaviours. However, while
much focus has been placed on the reasons be-
hind the soil stewardship paradox— a disparity
between knowledge without a corresponding
sense of care and care without a corresponding
level of knowledge (Neaman et al. 2024) —less
attention has been given to understanding how,
where, and when soil knowledge can be effec-
tively applied to promote sustainable soil man-
agement practices.

Identifying the specific contexts and condi-
tions in which different forms of soil knowledge
(e.g., scientific, traditional, or experiential) leads
to responsible soil care would contribute signifi-
cantly to fostering a culture of stewardship and
ensuring that soil management practices are both
effective and sustainable. Furthermore, under-
standing the pathways that link soil knowledge to
action could uncover mechanisms for improving
the adoption of sustainable soil practices.

Related Questions:

1. How can different forms of soil knowledge
(scientific, historical traditional, experien-
tial) contribute to responsible soil care?

2. What are the specific contexts and condi-
tions in which soil knowledge leads to ef-
fective stewardship practices?

* Moreresearchis needed in assessing how lo-
cal conditions affect the long- term success
of citizen science initiatives in soil health, in
terms of scientific data collection and public
education goals and other outcomes.

In terms of soil health, there is a lack of tar-
gets and indicators for its monitoring in the glob-
al context as well as a lack of a common meth-
od, or a unified protocol that can be applied.
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Additionally, soil monitoring presents another
degree of complexity as soil quality presents a
high variability in cities across short distances,
making regulation difficult (Price et al. 2024). An
extra challenge is the lack of recognition from
both policy makers and the general public of the
importance of healthy soils as an environmental
asset of equal importance as clean air and water.
Participatory approaches can play a key role to
engage the general public in scientific inquiries
about soils and soil health, which can cultivate
awareness and soil values (Price et al. 2024).

It is important to keep in mind that inte-
grating citizen science into soil health initiatives
presents both opportunities and challenges,
particularly in ensuring the scientific validity of
data collection and the effectiveness of pro-
posed remediation methods. While citizen en-
gagement can enhance data collection and
public awareness, there is a risk that misinter-
pretations of scientific facts and the promotion
of unproven soil management practices may un-
dermine long-term outcomes. For example, cer-
tain remediation techniques, despite being sci-
entifically discredited, continue to gain traction
among non- experts. Addressing this challenge
requires structured collaboration between soil
experts and citizen initiatives, fostering mutu-
al understanding through capacity-building ef-
forts, transparent communication, and scientif-
ically sound methodologies. Further research is
needed to assess how local conditions influence
the success of such collaborations and to de-
velop strategies that align citizen-driven efforts
with evidence-based soil health management.

Participatory approaches can be classified
into three categories based on the phase of in-
volvement of participants or the general public:
contributory, collaborative or co- created. Con-
tributory approaches are designed by scientists,
and participants are used to contribute to data.
In cCollaborative approaches, participants can
also help refine the project design or analyse the
data. In co-created approaches, participants are
involved from the initial design and conceptu-
alization of the research question (Wadoux and
Mcbratney 2023).

A study highlighted by the European Joint
Programme SOIL emphasizes the underutilized
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role of participatory citizen science in advancing
soil health. The research showcases how engag-
ing the public not only enhances data collection
but also fosters a broader commitment to sus-
tainable soil management (Mason et al. 2024). In
addition, Hou et al. (2020) highlight the potential
of emerging technologies, including 5G telecom-
munications, big data, and machine learning, to
revolutionize soil data collection and analysis.

In general, further research is needed to
assess how local conditions influence the suc-
cess of such collaborations and to develop strat-
egies that align citizen-driven efforts with evi-
dence-based soil health management and how
they can effectively contribute to data collection
and public education goals.

Related Questions:

1. How do local environmental, social, and
policy conditions influence the long-term
success of citizen science initiatives in soil
health, particularly in ensuring scientifical-
ly valid data collection and effective public
education?

2. What strategies can enhance the integra-
tion of robust citizen science into soil health
monitoring while ensuring scientific rigor,
preventing misinformation, and fostering
productive collaboration between soil ex-
perts and the public?

e More research is needed in improving soil
health communication strategies that prior-
itise cultural and social aspects of soils sig-
nificant to diverse actors.

Understanding effective strategies for soil
science communication and outreach is essen-
tial for fostering meaningful engagement with
diverse social actors. Brevik et al. (2022) high-
light the importance of integrating cultural and
social dimensions in soil education to enhance
public connectivity to soil, suggesting that sto-
rytelling and social media engagement can reso-
nate with non-experts by linking soil to quality of
life and cultural heritage. This finding highlights
the need to align communication strategies with
the cultural and social contexts of different au-
diences, using concepts like soil health and ter-
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roir, which make soil science more accessible
and meaningful.

Research indicates that individuals who are
dissatisfied with their financial situation are more
likely to express skepticism toward eco-social
policies and prioritize welfare-related concerns
over environmental challenges. This suggests
that lower-income groups may perceive climate
and environmental action as a less immediate
necessity compared to economic security. Con-
versely, as financial stability improves, individuals
are more inclined toward environmental advoca-
cy, as they can afford to prioritize post-material-
istic values. However, financial satisfaction alone
does not necessarily lead to stronger eco- social
engagement (Otto and Gugushvili 2020).

Additionally, trust in public institutions
and egalitarian values appear to be more de-
cisive in shaping environmental attitudes than
factors such as income, education, or place of
residence. This highlights the importance of
addressing ideological and perceptual divides
when fostering broad-based environmental en-
gagement and communication strategies (Otto
and Gugushvili 2020).

Furthermore, socioeconomic disadvan-
tage—characterized by lower education and in-
come levels—as well as spatial marginalization,
such as living in rural or economically declining
areas, should be better recognized in the design
and implementation of climate and environmen-
tal policies in the EU. Ensuring equitable access
to knowledge and opportunities is crucial to fos-
tering inclusive participation across all societal
groups (Schiile et al. 2019).

Effective communication on soil health re-
quires strategies that resonate with diverse audi-
ences and foster meaningful connections to the
environment. Evidence from the GEN Ecovillage
Impact Assessment highlights the importance of
participatory, narrative and experiential commu-
nication methods (Kovasna and Mattos 2017).
Ecovillages, traditional or intentional communi-
ties that aim to become more environmentally
sustainable, show that soil health messages are
most effective when embedded in personal sto-
ries, cultural practices and community experi-
ences. The study notes that “76% of ecovillages
regularly engage in educational activities related
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to environmental sustainability, using both formal
and informal channels”. One key strategy is to
use storytelling as a tool for environmental com-
munication. By sharing stories about local food
systems, land regeneration and community resil-
ience, complex ecological concepts become more
accessible. These approaches can be researched
and adapted to soil literacy campaigns to foster
emotional connections and lasting awareness.

However, current approaches are often
limited in addressing how empirical and scien-
tific knowledge can be communicated and inte-
grated in ways that foster genuine engagement.
As Krzywoszynska (2019) explains, soil science
communication frequently overlooks the knowl-
edge and meaning-making practices within lo-
cal communities. Her work on sustainable soil
management in England reveals that a focus
on scientific knowledge alone can isolate local,
experiential understandings of soil and calls for
strategies that consider these community-root-
ed insights.

Furthermore, Krasny and Tidball (2012) ex-
plore how civic ecology practices provide a mod-
el for community-centred stewardship, illustrat-
ing the importance of grounding environmental
communication within local, culturally relevant
practices. In this context, soil communication
must not only inform but also foster connections
that enable diverse stakeholders to see their
roles in soil stewardship. These insights point to
a significant knowledge gap in soil science out-
reach: few studies have explored how communi-
cation strategies might effectively initiate step-
by-step dialogues that bridge scientific and local
knowledge frameworks.

Addressing this gap may aid in develop-
ing inclusive, context-sensitive communication
strategies that better support sustainable soil
management practices across diverse regions
and communities.

Related Questions:

1. What strategies can create dialogue be-
tween empirical, practical, and scientific
knowledge about soils to engage diverse
social actors?

2. How can local knowledge be integrated into
soil science communication to foster con-
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nections between different social actors
and produce stewardship?

e More research is needed to identify the key
factors that stimulate instructors to adopt
new and inspiring teaching methods with
regard to soil education.

Soil science education faces the challenge
of developing innovative teaching methods that
both convey specialised knowledge and engage
a broader audience from various disciplines.
While Brevik et al. (2022) highlight the need to
organise content in ways that combine in-depth
knowledge with interdisciplinary perspectives,
studies investigating how educators can be
motivated to implement these methods remain
sparse. The integration of practice-oriented ap-
proaches, such as experiential learning empha-
sised by Williams and Brown (2011), offers an
opportunity to make complex soil topics tangible
and to underscore their significance for issues
such as climate adaptation, biodiversity, and hu-
man health.

Particularly, the idea of presenting soil
not solely as a scientific subject but as a nex-
us between ecological and social systems un-
derscores the relevance of interdisciplinary
approaches. Brevik et al. (2022) stress that
making soil knowledge accessible to students
from other disciplines is crucial for raising
awareness of soil's importance in global sus-
tainability challenges. However, educators of-
ten face practical challenges such as time and
resource constraints, which make it difficult to
integrate innovative methods into their teaching
practices. Krzic et al. (2024) demonstrate how
incorporating the concept of “Soil Health” into
curricula in Canada can strengthen the con-
nection between soil science and sustainability
education, yet also reveal the practical barriers
that hinder educators from broadly implement-
ing these concepts.

Furthermore, there is insufficient clarity
on which resources and incentives would most
effectively support educators. While practi-
cal, hands-on approaches such as field studies
and the use of soil biocrusts de Lima and Ro-
jas (2022) demonstrate significant potential,

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Author Name et al.: Outlook on the knowledge gaps related to soil literacy

questions remain about how to embed these
methods into interdisciplinary frameworks. Field
(2017) proposes deepening soil understanding
through concepts such as “knowing soil, know-
ing about soil, being aware of soil” across dif-
ferent levels of education. This could not only
achieve specialised learning objectives but also
enhance the broader relevance and acceptance
of soil topics. Combining practice-oriented and
interdisciplinary approaches thus represents a
promising avenue for advancing soil science ed-
ucation. However, there is a lack of systematic
studies exploring how these approaches can be
effectively implemented, the factors influencing
educators’ acceptance of such methods, and
ways to overcome practical barriers.
Related Questions:

1. What factors influence the willingness of
educators to adopt practice- oriented and
interdisciplinary teaching methods in sail
science education?

2. What educational resources or incentives
are most effective in promoting the adop-
tion of innovative teaching methods?

3. How can practical barriers, such as time
and resource constraints, be overcome to
support the implementation of these ap-
proaches?

e More research is needed in creating educa-
tional materials tailored to different educa-
tional levels and neurodivergent people to
encourage student interest, curiosity and
engagement.

Developing educational materials tailored to
diverse educationallevels and to individual needs
(e.g. neurodivergent individuals) is essential for
fostering student engagement. Neurodivergent
students, including those with autism spectrum
disorder (ASD) and attention-deficit/hyperactiv-
ity disorder (ADHD), often encounter systemic
barriers in traditional educational settings, which
can impede their learning experiences and en-
gagement (Durgungoz and Durgungoz 2025).

Despite this, existing studies often lack
comprehensive strategies for adapting curricu-
la to accommodate diverse learning preferenc-
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es and sensory sensitivities, which are crucial
for effective engagement. Additionally, there is
still a lack of understanding regarding how such
efforts not only impact immediate learning pro-
cesses but also influence academic success,
well-being, successful transitions, and life out-
comes beyond higher education (McDowall and
Kiseleva 2024).

This research gap is especially relevant for
all students at different education levels, from
young learners in primary education, to adults
with advanced knowledge. In early education,
structured and concrete learning materials help
build a strong foundation. As students move
through secondary and higher education, learn-
ing becomes more abstract and complex to en-
courage critical thinking and independence.

When it comes to soil education, there is
a lack of standardized and adaptable materials
across these levels. While resources exist, such
as the British Society of Soil Science’s educa-
tional materials or the Soils 4 Teachers platform,
they are not widely integrated into curricula and
vary in content and accessibility. This incon-
sistency creates gaps in soil literacy, making it
difficult to ensure that students at all levels gain
a comprehensive understanding of soil’s role in
environmental and societal systems. Develop-
ing structured, adaptable, and standardized soil
education materials tailored to different learner
needs and levels is essential for improving en-
gagement and learning outcomes.

Related Questions:

1. What strategies can be used to develop
standardized and inclusive soil education
materials that accommodate diverse learn-
ing needs and levels, including those of
neurodivergent students?

4.3 Overview table

The Soil Literacy Think Tank has identified a total
of 18 Knowledge gaps, which are presented in the
following table along with the respective Actions
and Bottlenecks. Additionally, these Knowledge
Gaps have been classified in Fig. 7 following
the Attitudes (Heart), Behaviours (Hands) and
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Figure 6. Classification of the Soil Literacy Knowledge gaps within the Attitudes, Behaviour, Competencies frame-

work (ABC).

Competencies (Head) framework referenced in
previous sections from the ABC of Soil Literacy
Report from the University of Durham (Johnson
et al. 2020). These classifications allow a bet-
ter understanding of the societal impact of the
identified Knowledge Gaps. As it is presented in
Fig. 6, the majority of the knowledge gaps are
targeting Behaviours and Competencies, with a
few that have relevance across the three ABC
components. For future work, the Think Tank will
take into consideration the identification of more
Knowledge Gaps targeting the Attitudes compo-
nent of the framework.

Soil literacy knowledge gaps
overview table

An overview of the soil literacy knowledge gaps
and can be found under Suppl. material 1.
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2023), ranging from microorganisms to verte-
brate species (FAO et al. 2021, Anthony et al.
2023). The activities of soil biodiversity (soil bi-
ota) support the delivery of various ecosystem
services, such as, for example, carbon seques-
tration, nutrient cycling, prevention of soil ero-
sion, pest control, and cleaning of air and water
(Pulleman et al. 2012, Creamer et al. 2022, Ba-
nerjee and van der Heijden 2023). However, soil
biodiversity is currently threatened by changing
climate extremes, intensive agriculture and for-
estry, as well as pollution and soil sealing in ur-
ban environments (Tsiafouli et al. 2015, FAO et al.
2021, Beaumelle et al. 2023, Phillips et al. 2024).
Protecting soil biodiversity, and thus its ecosys-
tem functions and services, through conserva-
tion will have positive effects in achieving the
Sustainability Development Goals (SDGs) (Bach
et al. 2020), including increasing water quali-
ty and food security, among others (FAO et al.
2021, Kéninger et al. 2022).

Soil life is key to the survival and health
of life and ecosystems on Earth (Banerjee and
van der Heijden 2023, Singh et al. 2023) but it
is under-protected (Guerra et al. 2022), leaving
its associated ecosystem functions and services
under-protected as well. Soil biodiversity is de-
fined by FAO et al. (2021) “as the variety of life
belowground, from genes and species to the
communities they form, as well as the ecologi-
cal complexes to which they contribute and to
which they belong, from soil micro-habitats to
landscapes”.

There is little research on the efficacy of
current conservation methods and frameworks
specifically for soil biodiversity protection (Guer-
ra et al. 2022). Recent work did not find posi-
tive effects of current conservation practices on
nematode diversity (Ciobanu et al. 2019) and soil
biodiversity and its ecosystem functions (Zeiss
et al. 2022). While biodiversity-friendly manage-
ment approaches, such as ecological intensifica-
tion (Kleijn et al. 2019), regenerative agriculture
and agroecology (Barrios et al. 2023, FAO 2023,
Grilli et al. 2023) are receiving increasing at-
tention, studies focused on conservation of soil
biodiversity and its ecosystem functions are still
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limited (Bardgett and Van Der Putten 2014, FAO
et al. 2021, Zeiss et al. 2022). Thus, there is a
stark need for identifying knowledge gaps and
new research and innovation to help protect and
conserve soil biodiversity, the ecosystem ser-
vices they provide, and their impact on human
health and economics.

This Think Tank (TT) aims to further the
Soil Mission’s research and innovation agenda
through the TT's collective knowledge of the
ecological importance of soil biodiversity to soil
health and its economic and societal impacts,
which also contributes to the EU Soil Strategy
and the EU biodiversity strategy. The integrative
nature of soil biodiversity conservation across
the Mission objectives is a key feature because
soil biodiversity is the basis of soil functions,
processes, and ecosystem services. Led by re-
searchers from Lund University with support
from University of Leipzig, TT members repre-
sent the areas of research and policy from uni-
versities, NGOs, and policy bodies. Through lit-
erature reviews and transdisciplinary work with
stakeholders and researchers, this TT is assess-
ing knowledge gaps and developing possibilities
for research and innovation for future roadmaps
to improve knowledge on the nature conserva-
tion of soil biodiversity. The TT has identified
current knowledge and knowledge gaps with the
following steps:

A literature review of the most recent re-

search into gaps of knowledge regarding

Nature Conservation of Soil Biodiversity

(September 2023)

 Online workshop with TT stakeholders (No-
vember 2023)

« Joint TT meeting, Barcelona, Spain (De-
cember 2023)

o Reassessment of knowledge gaps after
public review (January 2024)

e Joint TT meeting, Sofia, Bulgaria (Novem-
ber 2024)

 Literature analysis on soil ecology and con-
servation biology (Summer 2024)

e Online meeting with Nature Conservation

TT stakeholders (January 2025)
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2. State-of-the-Arton
Nature Conservation of
Soil Biodiversity

2.1 Current State of
Knowledge on nature
conservation of soil
biodiversity

“Soil, at any scale, is complex: opaque, composed
of a myriad of organo-minerals, roots, large and
small organisms, and exhibiting truly impressive
gradients in its biology, chemistry and physics
over large and small spatial ranges.” — Young and
Bengough 2018

Soil biodiversity, ecosystem functions, and
ecosystem services

The scientific scope of ecosystems ecology to-
day emphasises functions and the role that soil
biodiversity plays in understanding decompo-
sition, energy fluxes, or resilience aspects (e.g.
Eisenhauer et al. 2022). However, linking the
diversity of soil organisms to ecosystem func-
tions at different spatial and temporal scales in
real ecosystems is a difficult process due to the
sheer number of individuals and interactions,
therefore studies produce mixed results in the
types and magnitude of effects (de Vries et al.
2013, Nielsen et al. 2011, Schuldt et al. 2018,
Veen et al. 2019, Delgado-Baquerizo et al. 2020,
FAO et al. 2021).

The importance of soil biodiversity for eco-
system functioning has been investigated in ex-
perimental systems, with support found for the
importance of the soil food web to ecosystem
functions (de Vries et al. 2013, Wagg et al. 2014).
Soil ecosystem research developed from soil
food web ecology, where it is understood that
both direct and indirect interactions among soil
organisms determine how the diversity of spe-
cies and functional groups influence the energy
and nutrients fluxes in soil (de Ruiter et al. 1993,
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de Ruiter et al. 1998, Jochum and Eisenhauer
2021). The research in the 1970s and -80s, such
as the Man and the Biosphere (MAB) programme
of UNESCO, created knowledge on the signifi-
cance of soil organisms in ecosystem function-
ing globally (Persson and Lohm 1977). Of note
are the Tropical Soil Biology and Fertility Pro-
gramme (TSBF), established in 1984 under the
patronage of the MAB programme of UNESCO,
and the Decade of the Tropics initiative of the
International Union of Biological Sciences (IUBS).
The objective of this last programme was to de-
velop appropriate and innovative approaches for
sustaining tropical soil fertility through the man-
agement of biological processes and organic re-
sources (Woomer and Swift 1994).

Economic values of soil ecosystem services
associated with soil biodiversity lack optimised
and standardised models. There are general
frameworks of valuation of soil biodiversity (Pas-
cual et al. 2015, Plaas et al. 2019, Bartkowski et al.
2020, Han et al. 2023, Johnson et al. 2024), but
this has not become an important focus in aware-
ness raising nor in policy or land management
decision making as of yet (Phillips et al. 2020).
Thorough assessments of the contributions of
soil organisms to ecosystem services are urgent-
ly needed to guide decisions regarding tradeoffs
in choosing areas to conserve and conservation
methods. Fig. 1 details the overall linkage of soil
biodiversity to ecosystem functions, services to
humans, and the feedback of land management
and conservation practices by human society
on soil biodiversity. Changes to agriculture, land
management, environmental regulations, and
stewardship can be made to protect soil biodi-
versity, its ecosystem functions, and services to
humans and support the Sustainability Develop-
ment Goals of the UN (Bach et al. 2020; Fig. 2)

Conservation

Because we have incomplete, yet useful, infor-
mation on the taxonomic and functional diversity
in soils, this leads to challenges in understanding
how to effectively protect and preserve functions
through conservation and restoration practices.
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Figure 1. Soil biodiversity is integral to ecosystem functions and benefits human society through its associated ecosys-
tem services. In turn, conservation and land-management policy and decision making directly impact soils biodiversity
and, indirectly, ecosystem functions and services. Credit: Pensoft Publishers.
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Table 1. The IUCN categories of protected areas (Lausche 2011).

Category No. Description

Category la

Strict nature reserves function to preserve the biodiversity and sometimes geomorphological

features of an area and allow only light human traffic

Category Ib
Category Il

Wilderness areas are generally larger than nature reserves and have less stringent regulations

National Parks - areas protected for the preservation of ecosystem functions but with more

allowance for human visitation

Category llI
Category IV
Category V
Category VI

The Convention on Biological Diversity (CBD)
definition of protected area is: “A geographical-
ly defined area, which is designated or regulated
and managed to achieve specific conservation
objectives”. These areas are chosen for conser-
vation for varying desired outcomes, both eco-
logical and cultural. The IUCN categorises pro-
tected areas depending on the level of protection
they provide (Table 1, Lausche 2011).

This system of categorising continues to be
utilised even though it focuses on management
practices rather than monitoring biodiversity
outcomes (Boitani et al. 2008), particularly soil
biodiversity conservation (Guerra et al. 2022,
Zeiss et al. 2022). Most conservation areas were
designated to protect specific plants and an-
imals, with soil ecosystems not being directly
considered while developing such protected en-
vironments. Cameron et al. (2018) found a con-
siderable mismatch between aboveground and
belowground biodiversity at the global scale.
This means, if only areas with the highest abo-
veground diversity are protected, a large portion
of soil biodiversity-rich areas may be at risk for
degradation. Zeiss et al. (2022) examined soil
biodiversity and ecosystem services across
nature conservation areas and non-conserved
areas across Europe and found that, while con-
served areas are assumed to have positive ef-
fects on non-target ecosystems, there was no
evidence of these conservation measures having
positive influence on soil ecosystem functions. In
evaluating the aims in selecting these sites, mul-
tiple reasons were found for the lack of observed
effects. Firstly, there is a lack of emphasis on site
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Protection of national monuments or features, either natural or influenced by humans
Area managed for continuous protection of a species or habitat
Protected landscape or seascape with the allowance of for-profit activities

Areas protected but with the sustainable use of natural resources

selection for conservation based on the value of
soil biodiversity and associated ecosystem ser-
vices as evidenced by language used in selection
justifications. Secondly, Zeiss et al. (2022) found
an emphasis on threats to chemical and physical
properties of soil in the protected area selection
language instead of an emphasis on the value of
the belowground ecosystems and the functions
that influence abiotic factors.

Integration of conservation into sustainable use

Protected areas have long been the most import-
ant tools in biodiversity conservation. However,
with increased focus on ecosystem services and
human well-being, the focus is changing from pro-
tection of (threatened) species towards sustain-
able use (Hummel et al. 2019), and thus ecosystem
functions and services. Sustainable use is defined
as “the use of components of biological diversity
in a way and at a rate that does not lead to the
long-term decline of biological diversity, thereby
maintaining its potential to meet the needs and
aspirations of present and future generations”
(European Commission 1993). This approach is
widely used, especially in agriculture and forestry.
Examples of integration of conservation are e.g.
agroecological intensification, agroforestry, and
extensive forest technical management.

The EU Common Agricultural Policy (CAP)
provides several suggestions on how to pro-
tect soil biodiversity through soil health, e.g.
enhanced crop rotations, reduced tillage, cover
crops and fertiliser regulations. However, dis-
cussions and data concerning soils and their
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sustainable use have long focused on either
their vulnerability to physical impacts (e.g., soil
erosion, mining) or improvements to their food
production potential (e.g., through fertilisation).
Narrow perspectives, often missing indicators
and disconnectedness from environmental mon-
itoring, limit a wider discussion on the ecologi-
cal importance of soil biodiversity and its role in
maintaining ecosystem functioning beyond food
production systems (Guerra et al. 2021b). This
prevailing emphasis has also prevented soils
from becoming a more mainstream nature con-
servation priority (Guerra et al. 2021b).

Soil biodiversity conservation, policy, and indi-
cators

The conservation status of most soil organisms
is almost completely unknown, with most soil
taxa yet to be described. Among 17 EU direc-
tives, a review determined that most of the leg-
islations and strategies only address the threat
to soil biodiversity indirectly, e.g. the Biodiversity
Strategy for 2030 and the Farm to Fork strate-
gy (Koninger et al. 2022). These address issues,
e.g. soil pollution, that could benefit soil biodiver-
sity, but they do not explicitly address soil bio-
diversity per se. Soil monitoring schemes in the
EU member states often only focus on chemical
and physical properties, but rarely on soil biology
(Koninger et al. 2022). Out of the 196 parties to
the CBD, only a few had national targets in years
2011-2022 that consider conservation of soil and
soil biodiversity (Guerra et al. 2021b). Therefore,
monitoring and the careful choice of indicators to
monitor soil biodiversity are of key importance.
Though with the coming EU soil monitoring and
resilience directive, further data sets of soil bio-
diversity across all land use will secure data on
soil biodiversity (COM/2023/416 final 2023).
The Land Use and Land Cover Survey (LU-
CAS) action from the European Commission
(2025) enables EU wide sampling of soils and land
use. Eight hundred and eighty-five 885 locations
were sampled in 2018 and 2021/2022 to study
taxonomical and functional soil biodiversity by
metabarcoding. This may allow data and develop-
ment of a suite of biodiversity indicators that may
be considered for official inclusion in assessments
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and reviews of EU policies (Koninger et al. 2023,
Labouyrie et al. 2023). The identification of indica-
tor organisms of biodiversity or deteriorated com-
munities is still an unanswered research question
that currently is receiving a lot of focus (e.g. the
EU Horizon project SOB4ES: https://sob4es.eu/).

Soil biodiversity conservation awareness and
information sharing

At regional and local levels, awareness raising
targeted to stakeholders, general public and in
education is needed for understanding of the im-
portance of soil biodiversity and to support for
regional and EU-wide policies and regulations
on soil biodiversity conservation. To contribute
to conservation and sustainable management of
soil biodiversity, several initiatives and research
networks have been established over the years.
Agreements on and definitions of the conserva-
tion of soil biodiversity were brought to the inter-
national agenda by FAO in cooperation with the
Convention on Biological Diversity (CBD) with
the International Initiative for the Conservation
and Sustainable Use of Soil Biodiversity, estab-
lished in 2002. In 2012, the FAO set up the Global
Soil Partnership (GSP) to further increase atten-
tion and work on soils, due to their vital impor-
tance for food and agriculture. Another import-
ant effort is the Global Soil Biodiversity Initiative
(GSBI), an independent, third-party network of
scientists, policymakers, and citizens. Estab-
lished in 2011, the GSBI provides a platform for
assessing and synthesising knowledge on soil
biodiversity and was called upon by the CBD to
support post-2020 soil biodiversity monitoring
and target development, among others.

3. Roadmap for nature
conservation of soil
biodiversity

3.1 Key knowledge gaps

Key knowledge gaps, as judged through a com-
bined Think Tank prioritization process, are

shown in Table 2.
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Table 2. Ranking of the top 10 knowledge gaps identified (a full list of all identified knowledge gaps is given in section 3.3).

Rank ‘ Knowledge gap ‘ Type of knowledge gap

1 Standardisation of soil biodiversity monitoring methods Knowledge Development Gap
2 Economic valuation of soil biodiversity Knowledge Development Gap
3 Effective conservation and restoration methods Knowledge Development Gap
4 Effective conservation frameworks Knowledge Development Gap
5 Public awareness of soil biodiversity Knowledge Application Gap

6 Effective soil biodiversity conservation strategies Knowledge Application Gap

7 Minimum dataset to index soil biodiversity Knowledge Development Gap
8 Threats to soil biodiversity Knowledge Development Gap
9 Species taxonomic identity and ecology Knowledge Development Gap
10 Spatial & temporal distribution of soil biodiversity Knowledge Development Gap

3.1.1 Standardisation of soil
biodiversity monitoring methods

One of the major barriers in the capacity to de-
velop effective soil biodiversity conservation
practices and policies is the lack of standardised
methods of field data collection. Identifying
a set of soil indicators to track soil conserva-
tion is critical to provide a set of standard tools
and a public repository to monitor trends in the
biomass, abundance and diversity of soil biota
and its functions. The level of methodological
standardisation largely depends on the aspect
and type of soil organism to be measured. For
instance, the characterization of microbial bio-
mass is largely lacking a widely accepted and
standardised method in the literature, with mul-
tiple coexisting methods. The standardisation of
methods for both fully monitoring and conserv-
ing soil biodiversity have been raised as con-
cerns multiple times, and many alternatives have
been put forth (Gardi et al. 2009, de Bello et al.
2010, Cluzeau et al. 2012, Pulleman et al. 2012,
Griffiths et al. 2016).

For effective, standardised monitoring,
there is a need for the combination and inte-
gration of indicators to adequately interpret the
state of soil biodiversity and trends in the 6func-
tions of soil organisms. There are registered ISO
standards for a number of the soil organisms
and suggestions for methodological approaches
to measure structural and functional diversity of
soil organisms, and to identify gaps and meth-
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odological improvements so as to cross data
sets generated worldwide (RGmbke et al. 2018).
Thus, for key aspects of soil microbes such as
taxonomic and functional diversity, next gener-
ation sequencing “omics” have imposed a rel-
ative level of standardisation over the last two
decades with many researchers using the same
technology (e.g., Miseq and Hiseq lllumina) and
similar primer sets (e.g., 16s, V3-V5 regions).
Such standardiszation has been further sup-
ported by significant initiatives such as the Earth
Microbiome Project (earthmicrobiome) which
already suggested standardised protocols more
than a decade ago. This knowledge is key to pro-
viding standardised information for supporting
soil conservation worldwide.

Soil biodiversity indicators need to be easy
to standardize and widely available to researchers
worldwide (Guerra et al. 2021b). For instance, pre-
vious studies have proposed combinations of in-
dicators such as the evaluation of abundance and
diversity of earthworms and Collembola, along
with determination of microbial respiration (Bis-
po et al. 2009, Pulleman et al. 2012). Nematode
communities have also been used successfully to
evaluate the functional and ecological conditions
of soils (e.g. Ferris 2010). Cluzeau et al. (2012),
found that soil fauna and microbial biomass were
adequate as bioindicators for land-use types and
their managements, showing that, depending on
the depth of the functional aspects that are ex-
amined, the dataset need not be large to discern
differences in how the land is used and managed.
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Table 3. Summary of research and proposals for indicators for continental-scale monitoring of soil biodiversity, assessment

methodology, and proposed context for application suggested by the source authors.

Biodiversity indicators (assessment method)

Microbial biomass; 16S rRNA; pcaH; Nematode
(abundance); Nematode (richness); Acari
(abundance); Collembola (abundance);
Collembola (richness); Earthworm (abundance);
Earthworm (richness); Total macrofauna

Nematode (molecular); Earthworm
(morphological); Collembola (morphological);
Enchytraeids (morphological); Mites
(morphological); Functional genes; Fungi:
ergosterol; Microbial T-RFLP; PLFA

Tier 1: Earthworm species; Collembola species
Tier 2: Macrofauna; Mites; Nematode functional
diversity; Bacterial and fungal diversity by DNA or
PLFA

Bacteria & Archaea (molecular); Fungi (molecular);
Fungi (morphological); Mites (molecular);
Pyrosequencing of soil DNA; Molecular microbial
biomass

‘ Ecosystem function indicators

Nematode (molecular);
Earthworm (morphological);
Collembola (morphological);

Enchytraeids (morphological);
Mites (morphological);
Functional genes; Nitrification;
Potentially mineralisable N;
Hot-water extractable C; Bait
lamina; Extra-cellular enzyme
activity; Microbial respiration;

Water infiltration; DNA

abundance; Resilience

Tier 1: soil respiration Tier 2:
Bacterial and fungal activity

Functional genes (targeting
antibiotic producers);
Pyrosequencing of soil DNA;
Chip Technology (gene
regulation); Multiple enzyme
assay; Multiple substrate
induced respiration

Context

Association Cluzeau et al. 2012
of biological
indicators to
land use and

management

Policy-relevant; | Griffiths et al. 2016
ecologically-

relevant

European-scale
monitoring

Rombke et al. 2006,
Bispo et al. 2009

European-scale | Stone et al. 2016

monitoring

Table 3 summarises the indicators by bio-
diversity and functional categories that are ex-
amples of indicators to adequately represent the
state of soil biodiversity in general and the meth-
od used to rank these indicators. The problem
is that many of these indicators are not easy to
measure and researchers have not yet agreed on
a golden standard to measure such parameters.

Modern statistical analyses such as Spe-
cies Distribution Modelling, General Dissimilar-
ity Modelling and Niche-Space Modelling can
estimate values of biodiversity, but will require
(1) more trans-European observational soil-bio-
diversity data collation, including open-access
data sharing (e.g., Michener 2015, Tedersoo et
al. 2021), (2) improved thematic precision of
the association between observational soil-bio-
diversity data and environmental and climate
metadata (e.g. Bhusal et al. 2015), as well as (3)
capacity building in the form of training exper-
tise, time-consuming tasks of data collation, run-
ning the models species by species for the large
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range of extant soil species, and the human re-
sources necessary to do accurate assessments.

Actions to fill knowledge gaps in standardising
soil biodiversity monitoring methods

e Harmonisation and standardisation of meth-

ods and data management

o Cooperation and discussions between
soil ecologists and other disciplines

o 7Methods standardisation should inform
plans for current and future monitoring
and ‘assessments’, such as the Soil Bio-
diversity Observation Network (Soil BON)
and the Global Soil Biodiversity Observa-
tory (GLOSOB) (Nielsen et al. 2011, Eisen-
hauer et al. 2021, Guerra et al. 2022)

o The use of sequencing technology to
track soil microbial diversity

o In the case of larger organisms and soil
processes, there are also critical limita-
tions when it comes to data standardisza-
tion and comparison across databases
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o Develop and enhance soil biodiversity indi-
cators

o |ldentify examples of standard and easy to
measure biodiversity indicators

e Develop a comprehensive information sys-
tem of soil biodiversity

Bottlenecks to filling knowledge gaps in stan-
dardising soil biodiversity monitoring methods

The barriers to standardising methods for mon-
itoring and conserving biodiversity are relative-
ly few, though a transformation towards open
access and agreements on standardisation is
needed. There is a wide range of methodologies
for measuring soil biodiversity and functions, in-
cluding ISO standards, as mentioned above, but
although many suggestions have been made for
suites of parameters, there is still a lack of com-
mon agreement on one suite that is valid across
science and end users of the assessment. How-
ever, not all methods work for all climatic condi-
tions or soil types (van der Putten et al. 2012).

3.1.2 The valuation of soil
biodiversity

The value of soil biodiversity and ecosystem ser-
vices to environmental and human well- being
can be a powerful tool to 1) educate and influ-

Information
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ence public understanding of the costs and the
benefits of protecting diverse soil life, 2) incen-
tivise farmers/growers to protect soil biodiversi-
ty-based ecosystem services for public as well
as private reasons, and 3) provide a context for
the benefits and tradeoffs associated with soil
biodiversity conservation and land management
decision-making and policy development as
their efficacy is evaluated over time (Daily et al.
2009, Fig. 3; Brady et al. 2019).

There are several approaches to valuing soll
biodiversity as a bundle of ecosystem services,
but a common, comprehensive framework is need-
ed (Jonsson and Davidsdéttir 2016). An economic
value depends on the agent of the valuation so it
can be one value to the land manager and anoth-
er to the value of public goods (Scherzinger et al.
2024). The Ttotal Economic Value (TEV) method
values not only the flow of the services but also
the insurance values, or the values associated
with certain-world and uncertain-world values in
the future demand or supply buffering against ex-
ternal environmental disturbance (Pascual et al.
2015, Bartkowski 2017, Johnson et al. 2024). The
most common tools to determine use values here
are market pricing, net factor method, cost- based
methods, travel cost method, and hedonic pricing
(Jousset et al. 2017). In agriculture the value of soil
biodiversity has been used in a general way of how
biodiversity enhances production and through that
its value (Brady et al. 2015, Brady et al. 2019).

Impact of land use

Ecosystems &
biodiversity

Biological
interactions

Ecosystem
services

| Economic valuation l

Figure 3. A decision loop which can be used for policy development accounting for soil biodiversity and the resulting
ecosystem services and their values when taking actions and decision on natural capital (modified from Daily et al. 2009).
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To date, scattered knowledge exists on the
valuation of soil-based and biodiversity-based
ecosystem services, but there are no studies
on full evaluations of soil-biodiversity-based
ecosystem services. A combination of multiple
methods may be fruitful, though further devel-
opment of valuation methodologies is needed.
The concept of different Soil- mediated Contri-
butions to People (SmCPs) have been used to
value ecosystem services and drivers of change
e.g. land use (Johnson et al. 2024). Soil-biodiver-
sity-based ecosystem services valuations could
follow the example by Bartkowski et al. (2020)
who define soil-based ecosystem services as
“the outcomes of soil processes that economic
valuation focuses on in order to make visible the
benefits of soils for human well-being and inform
sustainable soil management and policy.” In de-
fining it this way, Bartkowski et al. (2020) could
associate soil-based ecosystem services to the
Common International Classification of Ecosys-
tem Services tool (CICES V5.1) (Haines-Young
and Potschin 2018). Since this is a framework for
all types of ecosystem service valuation, Bart-
kowski et al. (2020) used a subset of biotic eco-
system service categories for evaluation.

An alternative to this method is to use the
mMultiple studies proposing methodologies to
support the use of a valuation framework that
goes beyond the strictly ecosystem services
model to a use of multiple methods in combina-
tion or more holistic, integrated models combin-
ing monetary and non-monetary benefits (Pas-
cual et al. 2015, Bartkowski et al. 2020, Han et
al. 2023, Johnson et al. 2024). Non-monetary
methods, which include preference-based and
cultural valuation methods, have the advantage
of being more inclusive of multiple value systems
and of diverse stakeholders. Preference-based
valuation methods are more accurate in ac-
knowledging the public good value of soil biodi-
versity and soil health (Bartkowski et al. 2020).

Fixed monetary estimates of biodiversity
have been estimated, but this is without an agent
for the valuation and instead compared to val-
ues for e.g. food production (Pimentel et al. 1997,
Joénsson and Davidsdéttir 2016, van der Putten et
al. 2012). They suggest that maintaining a diver-
sity of functions to sustain ecosystem services
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may be more important than certain species’
presence, but they caution that this is an area
where further research is needed. Indeed, recent
work provides empirical evidence for the signif-
icance of soil biodiversity for valuing ecosystem
multifunctionality (Scherzinger et al. 2024).

Actions to fill gaps in the economic valuation of
soil biodiversity

« |dentify impacts on soil biodiversity that will
have economic value, either from the natu-
ral capital value of the resilience and insur-
ance values to future disturbances

 Identify socio-economic drivers of soil bio-
diversity in planning activities

e Foster interdisciplinary actions between
economist and soil biodiversity research
communities

e Increase research on how values can be
used in conservation and management of
land use

Bottlenecks to filling knowledge gaps in the
economic valuation of soil biodiversity

The barriers to efficient economic valuation of
soil biodiversity in response to management or
conservation actions lies mainly in the gap be-
tween economic sciences and the soil biodiver-
sity science. It is the lack of knowledge of the
community of soil organisms (“who is there”) and
functions of these (“what are they doing”) and
how this connects to the valuation of the soils to
different agents, e.g. land owners, society, and
thus each depends on the user (Jénsson and
Davidsdottir 2016) and their objective(s) (van
der Putten et al. 2012, Pascual et al. 2015). Val-
uations that are not done with a clear objective
and/or known recipient of the valuation will ar-
rive at values of estimated ecosystem services
that does not provide the necessary information
to change a management or a policy (Bartkowski
et al. 2020)

Identifying the costs of losing soil biodiver-
sity and its services is difficult because service
levels are realized over different spatial and tem-
poral scales (Pascual et al. 2015, Jénsson and
Davidsdottir 2016, Bartkowski et al. 2020) due
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to climatic gradients, soil organismal ecologies,
and the change in weather and climatic condi-
tion (Scherzinger et al. 2024).

3.1.3 Conservation and restoration
methods

What conservation methods protect soil biodi-
versity? Since conservation management and
site selection have typically not considered soil
biodiversity and its ecosystem functions, it is still
unclear how current conservation affects soil bio-
diversity and how to adjust current conservation
and restoration practices to positively impact soil
biodiversity across the EU and regionally. The
means of protection (e.g. creating protected ar-
eas, use of integrated management) can be ap-
plied to conserve soil biodiversity as mentioned
above, protected areas are chosen based on
varying desired outcomes, both ecological and
cultural (Boitani et al. 2008, IUCN Standards and
Petitions Committee 2024), and typically not
for soil biodiversity conservation (Ciobanu et al.
2019, Zeiss et al. 2022). Rare species protection
of soil organisms is atypical, because knowledge
of specific species’ abundances and distributions
are, for the most part, lacking (Phillips et al. 2017,
Karam-Gemael et al. 2020). Though examples ex-
ist on Earthworm species diversity and their con-
servation status (Stojanovi¢ et al. 2008), the dis-
tribution of species is often caused by trade-offs
in life history;, and with changing environmental
conditions the risks of extinctions increase (Jous-
set et al. 2017). Thus, we can expect both natural
and anthropogenic processes driving the change
of species spatial and temporal distribution in soil
(Phillips et al. 2020, Patoine et al. 2022).

Regions across Europe must be evaluat-
ed for the objectives of conservation and what
specific soil communities and associated func-
tions they can support. Globally, areas that may
rank highly in one ecological dimension, such as
species richness, do not always have the highest
functionality (Guerra et al. 2022). This suggests
that potential sites for conservation are not equal,
nor can they be treated similarly, when evaluating
potential areas to conserve and what restoration/
conservation practices are effective when target-
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ing soil biodiversity. Abiotic conditions known to
affect biodiversity have a large potential to host
and conserve a diverse community of biota as
shown for certain regions across Europe, such as
Ireland, Slovenia, and Sweden (Aksoy et al. 2017).
Effective evaluation of current conservation
and restoration practices requires knowledge of
biotic/abiotic relationship complexities, includ-
ing effects of land-use and human pressure to
interpret the evaluation of current practices but
what we know is that with sustainable land use,
soil biodiversity can be supported (Phillips et al.
2024). General management options could be
“scaled-up” (Barrios et al. 2023) as considering
ecosystem functions during assessment of site-
scale measures to management efficacy can
vastly improve conservation of soil biodiversity at
broader, social scales i.e. landscape scale (Cio-
banu et al. 2019, Zeiss et al. 2022). Improvement
and use of long- term studies and experiments
that focus on specific techniques needs further
research, such as dead wood management in
forests and encouraging heterogeneous soil hab-
itats through diversifying plant species (Eisen-
hauer et al. 2013, Eisenhauer 2016, Scherber et
al. 2010). In addition, there is increasing evidence
that suggests that landscape diversification ben-
efits soil biodiversity (e.g. Vahter et al. 2022).
Protecting soil biodiversity in a nature con-
servation framework has the potential to not
only preserve the biotic community, but also
the ecosystem functions provided. Active res-
toration and conservation require attention to
the complexity of species diversity and other
biodiversity facets (e.g. size variation, life his-
tory traits) (Eisenhauer et al. 2021, Guerra et al.
2022, Guerra et al. 2024) as well as a diversity
of functions (Nielsen et al. 2011). Maintenance of
species richness, community composition, and
ecosystem functions are not often synonymous,
and investigations into a trait-based approach to
soil biodiversity conservation and restoration are
largely lacking (Guerra et al. 2022). Assessments
of soil biodiversity and its associated functions
are known from only 0.3% of sampled sites
(Guerra et al. 2020) and, this lack of data results
in an incomplete picture of how identified taxo-
nomic units are functioning in soils and how to
affect them through management. Auclerc et al.
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(2022) summarised the importance of functional
trait approaches to restoration with soil inverte-
brates but also detailed critical knowledge gaps.
These include a lack of knowledge of:

o trait-based techniques for restoration of
soil biodiversity

o the functions invertebrates play in the eco-
systems

e representation of functional data in current
trait-based databases

» relationships of ecosystem function to traits

Actions to fill gaps in soil biodiversity conser-
vation and restoration methods

e Explore and promote land management
strategies improving soil biodiversity.

e Evaluate current and future policy instru-
ments and develop decision frameworks
and guidelines for conservation of soil spe-
cies biodiversity

o Address data gaps and enhance soil biodi-
versity indicators

e Support stakeholders’ networks and en-
gagement in soil policy and land use man-
agement.

Bottlenecks to filling knowledge gaps in soil bio-
diversity conservation and restoration methods

Challenges and bottlenecks to filling these gaps
in knowledge to conserve soil biota require an
expansion of toolsets and innovative approach-
es to tackle the predictions of diversity at sites.
In brief, the bottlenecks and the importance of
advancing the science of soil-dwelling taxa need
information on how to effectively conserve and
restore soil life. These include:

1. the barriers to discovering and describing
the numerous and diverse, yet unknown,
taxa in soils,

2. the lack of understanding of life histories
and functions of a large part of the soil or-
ganisms and how this drives their distribu-
tions,

3. the threats to soil biodiversity, such as inva-
sive species and extinction risks.
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3.2 Prioritized knowledge
gaps

3.2.1 Harmonised conservation
frameworks

Conservation frameworks are employed for dif-
ferent purposes and include not only species
richness but also cultural, aesthetic, ecological
aspects, as well as ecosystem services. In con-
trast to aboveground life, which is more easi-
ly observed and vastly more investigated, the
richness and ecosystem functions of soil inver-
tebrate and microbial taxa are still in need of
clarification (Eisenhauer et al. 2019). This leads
to the question, what species/taxa are in need
for conservation, and what frameworks could
be used to secure the efficient conservation
of soil biodiversity? While the overall diversity
(species richness) of taxa in soil is huge, large-
ly unknown, and important in and of itself, the
functional aspects of soil faunal and microbial
life cannot be lost in the process of protect-
ing taxonomic diversity (Phillips et al. 2020).
It is not clear for example, whether aspects of
soil biodiversity can be related to aboveground
ecosystems’ conservation status and conserva-
tion frameworks (Cameron et al. 2018, Zeiss et
al. 2022). Thus, new research is needed to in-
vestigate if current (aboveground) conservation
frameworks can be used for soil biodiversity or
specific frameworks for soil biodiversity con-
servation are needed. As with otherall conser-
vation frameworks, clear goals and objectives
should be set, which should focus on both di-
versity of taxa and diversity of functions/ser-
vices provided. Policies and legal foundations
are needed for the efficient implementation of
the conservation framework. These should be
implemented at several scales, from the local to
the national, regional or global scale, and com-
plement each other.

Stakeholder identification and engagement
is also a significant step towards conservation
efficiency at any level. Additionally, Tthere is a
lack a unified definition of soil biodiversity to use
as a basis for policy development and regulato-
ry measures (Rillig et al. 2019, FAO et al. 2021).
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Finally, the conservation framework should en-
compass monitoring requirements and selection
of soil indicators, thus the previous knowledge
gaps on monitoring and standardisation meth-
ods needs to be aligned to the frameworks that
are used in actions to conserve soil biodiversity.

3.2.2 Need for public awareness
of soil biodiversity

Education and awareness-raising of the im-
portance of soil biodiversity to the provision of
ecosystem functions and services is import-
ant to adjust perceptions regarding the pro-
tection of soil life. Many of the challenges of
communicating the importance and need for
the protection of soil biodiversity are similar
to other issues in global environmental sci-
ence education. Thus, this knowledge gap will
be linked to the Think Ttank on Soil LI itera-
cy, which addresses knowledge gaps regard-
ing public awareness. The knowledge gap is
here to see the transformation of change and
when to make use of public awareness of soil
biodiversity. A thorough understanding of the
problem, and solution is needed, to translate
understanding to a change in behavior in order
to gain public support for protection of soil life
and its functions.

How can communication of soil biodiversi-
ty be enhanced? One way to do this is to fo-
cus on the local context of soil conservation to
a particular audience (i.e. urban, agricultural,
land manager/steward) — the “why-YOU-should-
care” approach (Moscatelli and Marinari 2024).
Another is to use methods in media communica-
tions rather than soil science to reach the pub-
lic since scientific jargon can cause a feeling of
disaffectedness. Through artistic means we can
also engage the wider public in a way to evoke
caring about soil and soil life (Toland and Wes-
solek 2010).

In 2009, the JRC, with support from the
European Soil Bureau Network, established a
Working Group on “Soil Awareness and Edu-
cation” to establish an action plan for devel-
opment of initiatives to raise awareness of the
importance of soil and soil biodiversity across
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the European society. Subsequently, the JRC
initiated a Working Group that now has been
broadened to support European Soil Partner-
ship (ESP) Pillar 2, which targets soil awareness
and education.

3.2.3 Need for implementation
of effective soil biodiversity
conservation strategies

Conservation strategies involve the planning
and implementation of protection of a species
or area as well as specific methods. While we
have a lack of knowledge of what an effective
nature conservation strategy looks like, there are
inter- and transdisciplinary ways of implement-
ing the integration of soil biodiversity into the
decision-making process of conservation pro-
fessionals (Fig. 4, Parker 2010). This requires the
interactions and cooperation between conserva-
tion planners and soil ecologists.

For conservation and environmental plan-
ners, the scale of conservation strategies is
typicallyat the landscape level, but, for the ma-
jority of soil-dwelling species, interactions hap-
pen at the scale of micrometer to over hundreds
of meters (Hedlund et al. 2004). The challeng-
es of scaling-up monitoring and conservation
schemes that are representative of the hetero-
geneity and scale of interaction of soil biodi-
versity remains a main frontier for both conser-
vation strategy development and soil ecology
and is a relevant knowledge gap. Knowledge
from previous assessment and strategies for
conservation show that there has been a bias
towards large soil taxa and a lack of soil mi-
crobes in previous assessments and strategies
(Klironomos 2002). In the last 10 years, one can
argue that this bias has reversed with the rel-
ative ease of modern molecular techniques in-
tended to investigate microorganisms in water
and soil substrates.

This knowledge gaps is highly integrat-
ed into the already mentioned knowledge gap
on conservation frameworks (see 3.1.1) and re-
search is needed to work out how both frame-
works and strategies can be further developed
into conservation of biodiversity.
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Access
and organise
existing
information on
soil biota. Decide
how to use
information from
soil maps.

Begin with a
team interested
in incorporating

soil organisms into
their biodiversity
assessment.

Develop
partnerships
across agencies
and research
including a soil
ecologist.

Collect data in
the field on soil
biodiversity and
biogeography.

Use the
assessment
as a baseline

to monitor
biodiversity
over time

Incorporate
soil biodiversity
information into
the assessment
being conscious

of issues of

scale.

Finalise the
biodiversity
assessment

Figure 4. Suggested steps to incorporate soil biodiversity into overall biodiversity assessments for the purposes of con-

servation strategies. Redrawn from Parker (2010).

3.2.4 Lack of minimum dataset to
index soil biodiversity

While chemical and physical parameters can be
measured easily in routine procedures, biologi-
cal parameters are more difficult to measure,
more costly and require special expertise. Time
and financial limitations are significant barriers
for the analysis of numerous parameters in each
soil sample (O’Sullivan et al. 2017). The choice
of relevant soil parameters and interpretation of
measurements are not straightforward and often
several parameters show collinearity, thus some
are redundant (Lima et al. 2013). Hence, it is not
anticipated that all possible biological parame-
ters would be measured in a soil sample (espe-
cially at large scales), nor is it self-evident that
the ones selected for measurement would also
be the most informative ones.

The concept of a Minimum Data Set (MDS)
for soil quality assessment, which would be a set
of selected key physical, chemical, and biologi-
cal indicators, was propsed in work with human
health by Doran and Parkin (2015). The concept
of MDS has also been used successfully in the
assessment of water quality (Ingvertsen et al.
2011). But is it possible to monitor soil for the
conservation of soil biodiversity with an MDS?
The typical biological parameters measured are
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those for which the researcher has interest and
expertise (e.g. focusing on one group of organ-
isms, such as earthworms, microbes etc.). Mo-
lecular tools have provided new opportunities for
the possible inclusion of biological aspects into
MDS selection, but their informativeness has
boundaries and additional conventional or mor-
phological methods are needed to complete the
necessary input.

The MDS selection should cover criteria
such as integrating soil processes, consistency
and comparability across different studies and
management systems, sensitivity to manage-
ment and climatic changes (Doran and Parkin
2015). For soil biodiversity other aspects, like the
soil as a habitat, have to be considered as well
(Baveye et al. 2016). Methodological transparen-
cy and simplicity would be essential for enabling
the broad adoption and application of the MDS
selection. Among soil parameters/indicators, bi-
ological ones are considered more informative
but are not always included in MDS selections
(Binemann et al. 2018). In systematic, large
scale soil monitoring projects, the MDS of pa-
rameters typically includes chemical and physi-
cal parameters, usually and, lately, some biolog-
ical ones (e.g. LUCAS inventories from 2018 and
2021). Several biological indicators have been
proposed in literature as being efficient in denot-
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ing a wider biodiversity range (e.g. in Ritz et al.
2009). Using a subset of those for an MDS would
provide merit in large- scale monitoring projects
for soil biodiversity conservation, as this would
reduce cost and labor. However, standard op-
erating procedures (SOPs) are essential for this
work at a large scale. This, in turn, requires col-
laboration among different experts and setting
common scopes.

3.2.5 Lack in knowledge of
specific threats to soil biodiversity

The current knowledge on threats and, especial-
ly, extinction risks for soil-dwelling biota is little
and inconsistent, but vital to knowing where and
how to conserve this diverse biotic group. How-
ever, the vulnerability of soil invertebrate and
microbial organisms, including rare species, is
almost entirely unknown and little progress has
been made (Decaéns et al. 2008). Bottlenecks
to the conservation of soil organisms include
knowledge of identifying very rare/threatened,
endemic, and vulnerable species and their habi-
tats for protection (Veresoglou et al. 2015).

To protect vulnerable species or groups,
there is a need to identify and have threatened
species recognized, requiring knowledge of the
species (or group) and its functional role, espe-
cially in the case of species that are highly sen-
sitive to climate shift, invasion of exotic species,
etc. Moreover, standardised assessment criteri-
on for rare or threatened taxa across the EU is
necessary for European and regional EU region-
al conservation efforts of conservation (van der
Putten et al. 2023). With these standards, we
could potentially identify the taxa at risk, cre-
ate a preliminary list of what species/OTUs are
threatened, and identify conservation practices,
concrete management options, and potential
sites for conservation. This is critical to predict
the fate of soil organisms under global change
and ensure their conservation.

A corollary to the identification of rare,
threatened, and endemic species is, what are
the criteria to designate something as invasive
with regards to soil organisms? This has not been
taken into consideration, primarily, because the

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

directionality of invasions in soils is difficult to
determine, and we are unaware of the identity
of most local and invasive soil taxa. It is also un-
known what environmental, or economic damage
‘invasive’ organisms can cause to soils and eco-
systems, unlike similar studies in, for example, ag-
ricultural settings. The two barriers to finding out
this information are that (1) there is little way to
track invasion or origin of a present organism, and
(2) there are no conceptual models to think about
what a species is in the way plant or animal spe-
cies are conceptualized, especially for microbes.

3.2.6 Lack in knowledge of
species taxonomic identity and
ecology

Many soil taxa are unknown to science and await-
ing description (Orgiazzi et al. 2016) because:

1. Soil fauna and microbes are often cryptic and
difficult to observe without disturbing their
functioning and habitat, and the variance in
the diversity of these communities is signif-
icant over just millimetres (Rillig et al. 2015).

2. Microbial taxa are difficult, sometimes im-
possible, to isolate and culture with our cur-
rent methodologies. This is compounded
by the differences in methods necessary
to detect and quantify different soil organ-
isms due to heterogeneity in their ecologies
(ranging from water-related to truly terres-
trial species), size classes (ranging from
microbes to megafauna), and distribution
patterns (Decaéns 2010, White et al. 2020,
Eisenhauer et al. 2021).

3. Specialised taxonomic expertise is needed
to identify invertebrate species within groups
of soil animals. Expertise in many soil fauna
groups is rare, leading to a perpetual cycle
of infrequent opportunities for knowledge
transfer and a dwindling body of experts.

Filling gaps in the taxonomic, as well as func-
tional, information of soil biota communities, start-
ing with those in already vulnerable ecosystems
is of key importance. Knowledge is partly lacking
on impact of extreme oscillations in precipitation
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and temperature. It is also critical to provide the
foundation to monitor the influence of soil invasive
species, both for conservation of diversity but also
for the functioning and stability of our ecosystems.

Studies of ecology and life histories of
soil-dwelling species are time-consuming and
detail-oriented undertakings are necessary to un-
derstand their ecosystem functions and effects
on other life, yet they are often considered not in-
novative enough to be funded. Current knowledge
in invertebrate ecology is based on manipulative
landscape experiments and some direct observa-
tion and mesocosm experiments, the latter two
of which are rare research approaches in ecolo-
gy, but common in biological control. In microbial
research, the current methods include molecular
methods for identification (i.e. metabarcoding,
“shotgun” approaches), with substantially fewer
studies on the functional genes that reveal what
different microbes digest and release.

3.2.7 Lack in knowledge of spatial
and temporal distribution of soil
biodiversity

We lack critical information on most soil taxa, their
habitats and what drives their distributions to be
able to understand how and where conservation
can be achieved for different taxonomic groups
(Cameron et al. 2019). This includes the drivers
of community dissimilarity in soil taxa across eco-
systems, along with their uniqueness (e.g., en-
demic species, specialisation for given habitats).
For instance, while disturbed habitats can show
high species richness and total densities, these
are often caused by generalist species, leading
to a homogenization of soil biodiversity and loss
of diversity at the landscape scale in a region or
country (Gossner et al. 2016, Delgado-Baquerizo
et al. 2021, Guerra et al. 2021a, Banerjee et al.
2024). Recent work revealed the ubiquity of com-
plex interactions between multiple co-occurring
environmental drivers that could affect distribu-
tions or evolutionary tactics (Rillig et al. 2019), yet
these are poorly studied. These complexities, in-
cluding effects of land-use and human pressures,
are needed in an integrated evaluation of current
practices. Extrapolating conclusions from agricul-
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tural research that investigat eding increasing soill
biodiversity for increased ecosystem function can
be a starting point for developing knowledge of
distribution patterns. Long- term studies and ex-
periments focusing on specific techniques, such
as dead wood management in forests, recogni-
tion of trees as “hot spots” of soil biological ac-
tivity and encouraging heterogeneous soil habitat
through diversification of plant species (Eisen-
hauer et al. 2018) are needed to understand their
direct and indirect effects on soil biodiversity.

Current understanding of distributional pat-
terns is based on expert knowledge, observation-
al data from landscape gradient studies, and/or
available records in museum collections, but these
vary in utility. One common issue is thate lack of
necessary environmental and climate metadata to
associate taxa to habitat characteristics is missing
from publications and, essentially, non-existent in
museum records (Gotelli et al. 2023). Experimen-
tal research on the response of soil taxa pres-
ence and diversity to environmental predictors is
patchy (Phillips et al. 2024), biased towards unre-
alistic levels of edaphic parameters change, and
unrepresentative for some climates, such as the
tropics (Cameron et al. 2018, Guerra et al. 2020),
and not directly comparable across ecosystems.

The overall lack of abundance and distribu-
tion baselines and possible thresholds for soil or-
ganisms comparable to those for above-ground
organisms do not exist though they are urgent-
ly called for by policy (European Environment
Agency 2023). “Red Listing” of soil invertebrate
organisms is rare (Phillips et al. 2017, Mueller et
al. 2022) because, for one reason, typical criteria
for listing, such as “population size” in a region
or country, are inappropriate for organisms in
substrate such as soil. Few studies have incor-
porated IUCN criteria (i.e. IUCN Standards and
Petitions Committee 2024) for identifying threat-
ened or endangered soil species (Marchan and
Dominguez 2022, Salako et al. 2023). However,
this necessitates answers to some fundamental,
yet wholly uninvestigated questions: What de-
fines rarity for soil taxa? How appropriate for the
myriad of soil taxa are local abundance, habitat
specificity, and/or geographical distribution in
determining rarity? How do we determine sus-
ceptibility to extinction for soil biota?
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Table 4. Overview of knowledge gaps (KGs) for effective nature conservation of soil biodiversity (SB), their types, actions by
which these KGs may be filled, and barriers (bottlenecks) to previous attempts to fill these gaps. Type of KG: KDG - Knowledge
Development Gap; KAG - Knowledge Application Gap. Action: (R) - Research; (I) - Innovation. All knowledge gaps apply across
multiple sectors (i.e. agriculture, forest, urban and industrial and/or nature).

Action Bottlenecks

Knowledge gap Short description ‘ Type of ‘

(¢}

Standardisation of
SB and ecosystem
function
monitoring
methods

Economic valuation
of SB

Conservation
and restoration
methods

Harmonised
conservation
frameworks

Need for public
awareness of SB
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Standardised KDG
methods of field data
collection are needed

to provide baselines

and monitor trends in

the abundance and
diversity of soil biota

and its functions.

A common, KDG
comprehensive

framework is lacking

for economic valuation

of SB. Studies on
evaluations of SB are
lacking

Current conservation | KDG
and restoration

methods’ impact on

SBis unclear and it is

also unclear how to

adjust them so that

they positively affect

soil biodiversity

How can frameworks | KDG
be used to secure

efficient conservation

of SB. Can we use

existing framework

or do we need a new
framework?

Effective ways of
communicating
about conservation
of SB are lacking. It
is necessary to gain
public support for
protection of sail life
and its functions
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KAG, KDG

- Harmonisation and
standardisation of methods and
data management (R, 1)

- Develop and enhance soil
biodiversity indicators (R, 1)

- Identify examples of standard

and easy to measure biodiversity

indicators (R)

- Develop a comprehensive
information system of soil
biodiversity (R, 1)

- Identify impact on soil properties
that will have economic value (R)
- Identify socio-economic drivers

of soil functions and services in
planning activities (R)

- Foster interdisciplinary actions

between economist and SB
research communities (1)

- Increase research on how values

can be used conservation and
management (R)

- Explore and promote sustainable
land management strategies (R,l)

- Evaluate current and future
policy instruments and develop
decision frameworks and

guidelines for conservation of soil

species (R)

- Address data gaps in soil health,

improvement measures and
enhance SB indicators (R,l)

- Support stakeholders’ networks
and engagement in soil policy and

land use management (1)

- Establish framework for
conservation of soil biodiversity
and functions (R,!)

- Evaluate current and future
policy instruments, advocate
regional knowledge adoption
strategies and integrate SB into
planning activities (R,l)

- Stakeholders’ learning

networks, collaboration and early

engagement in soil policy and
management development (R,l)
- Social research on the best
communication methods for SB
awareness (R)

Short-
term

- Lack of unified
network of sharing
methods hinders
standardisation of
monitoring methods

- Complicated to
develop SB indicators
that work for all
climatic conditions or
soil types

Short-
term
toMid-
term

- Disconnection
between economic
sciences and SB
sciences hinders
efficient valuation
of SBin response
to management or
conservation
actions

Short-
term

- Unknown species
and taxa in soil
hinders conservation
actions and strategies
- Lack of
understanding of

life histories and
functions of many

soil organisms and
how this drives their
distribution hinders
conservation actions
and strategies

- Knowledge on
threats to SB, and
extinction risks, is
lacking, which hinders
conservation actions
and strategies

Short-
term

- Lack of policy
targets for
conservation and
restoration hinders
conservation

Short-
term

- Disconnection
between social
sciences and SB
sciences hinders
social research on the
best communication
methods for SB
awareness
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Knowledge gap Bottlenecks

Short description

Type of
KG

Need for
implementation
of effective SB
conservation
strategies

Lack of minimum
dataset to index
SB

Lack in knowledge
of specific threats
to SB

Lack in knowledge
of species
taxonomic identity
and ecology

Lack in knowledge
of spatial

and temporal
distribution of SB

Data storage
& Digitalisation
needs

Improved
predictive
modelling
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Knowledge of
effective nature
conservation
strategies for SB is
lacking. Inter- and
transdisciplinary
ways of implementing
the integration of
SB into decision
making process

of conservation
professionals is
needed

A minimum dataset
to index SB is lacking.
Would it be possible
to monitor soil for the
conservation of SB
with the concept of
Minimum Dataset?

Current knowledge

on threats and
extinction risks for
soil organisms is little
and inconsistent.
Vulnerability of

most soil organisms,
including rare species,
is almost

entirely unknown

Filling gaps in
taxonomic and
functional information
on soil biota
communities is
needed to provide
the foundation for
monitoring and
conserving soil
biodiversity

Information on the
spatial and temporal
distribution of most soil
taxa and what drives
the distribution is
lacking. This is needed
for understanding

of how and where
conservation can be
achieved for different
taxonomic groups

Data is generally stored | KAG

with IPR regulations
and not available for
open access

Predictive modelling
needs improvement
due to the small-scale
heterogeneity of soil
communities

- Stakeholders’ learning networks
and engagement in soil policy and
management development (R,)

- Develop guidelines for
conservation of soil species and
integrate SB conservation into
planning activities (R,l)

- Methods development/
improvement (R)

- Develop understanding

of relevant biological soil
parameters and interpretation of
measurements for conservation
of SB (R)

- Collaboration network for
different experts (1)

- Red list development (R)

- Develop criteria for invasive
species designation (R)

- |Identification and monitoring of
threats impacts (R)

- Standardised assessment and
risk analysis for policy guidance
(R,)

- Capacity building (training in
taxonomy)

- Methods development/
improvement (R)

- Develop a unified definition of
SB for policy development (R)

- High resolution sampling and
monitoring (R)

- High resolution sampling and
monitoring (R)

- Develop a comprehensive
understanding of what drivers
affect distribution of soil
organisms (R)

- Red list development (R)

- Develop a definition for rarity for
soil taxa (R)

- Develop a comprehensive
information system of soil
biodiversity (1)

- Methods development/
improvement (R)

- The scale of Mid-
conservation term
strategies focuses on
landscape level, but

most soil organism
interactions occur

at very small scales

causes discrepancies

in actions

- Difficulty and cost of | Mid-
measuring biological |term
parameters causes
uncertain predictions

due to low replication

- Difficulty of Short-
tracking origin of a term
present soil organism
causes uncertainties
regarding invasive

species

- Unclear species

concept hinders
concervation actions

to mitigate threats

to SB

- Lack of taxonomic Short-
expertise hinders term
identification of

species

- Unclear species

concept hinders

identification of

species

- Unclear species Short-
concept hinders term
identification of

species

- Lack of taxonomic

expertise hinders
identification of

species

- Lack of binding
policy
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3.3 Overview of knowledge
gaps

Table 4 provides an overview of knowledge gaps
(KGs) for effective nature conservation of sail
biodiversity, their types, actions by which these
KGs may be filled, and barriers (bottlenecks) to
previous attempts to fill these gaps.

Conclusion

Conservation of soil biodiversity is a multifac-
eted process involving, what we expect will be,
a multitude of approaches that will benefit the
large-scale diversity of soil life across Europe as
well as the needs and environments of the re-
gions within Europe. Developing effective ways
to conserve and monitor the trends in soil bio-
diversity across the complex functions of these
communities is as important as the communities
themselves and should be considered in devel-
oping plans for their protection.
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Table 1 Top 10 Knowledge Gaps

Author: Melpomeni Zoka
Data type: Table

Rank

284

Knowledge gap

What are the most efficient and cost-effective Land Degradation prevention and restoration measures incorporating an
assessment of trade-offs between different land uses and pedo-climatic zones?

Lack of thorough understanding of the interactions between Land Degradation and Ecosystem Services?
Historical, current and future social and economical interactions with Land Degradation.
Lack of comprehensive understanding of Land Degradation (effects, drivers).
How can we enhance regional planning regarding reducing Land Degradation?
Lack of Land Degradation related data and limited monitoring at different scales
How do we support the farmers to make the turning point towards sustainable land and soil management soil practices?
Limited mitigation Land Degradation strategies
How do we educate and inform the population more effectively about the value of natural resources, including soil.

Is the concept of Land Degradation Neutrality enough to ensure healthy land and soils in the future?

Type of knowledge gap

Knowledge Development Gap

Knowledge Development Gap
Knowledge Development Gap
Knowledge Development Gap
Knowledge Application Gap
Knowledge Development Gap
Knowledge Development Gap
Knowledge Application Gap
Knowledge Application Gap

Knowledge Development Gap
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Helena Guimardes et al.: Outlook on the knowledge gaps to reduce soil erosion (Suppl. materials)

Supplementary materials for “Outlook on the knowledge gaps to
reduce soil erosion”

Supplementary material 1

Table 2 -

Author: Helena Guimaraes, Martinho Martins, Nuno Guiomar, Claire Kelly, Diana Vieira, Teresa Névoa, Isabel Brito,
Melpomeni Zoka, Sergio Prats, Artemi Cerda, Pandi Zdruli, Nikolaos Stathopoulos, Jodo Madeira, Lilia Fidalgo,
Pierfrancesco Di Giuseppe, Saskia Keesstra, Endre Dobos

Data type: The total number of knowledge gaps identified and details about each one

Brief description: Table 2: The total number of knowledge gaps identified and details about each one.

Table 2. The total amount of knowledge gaps identified and details about each one.

Sector Actions

Knowledge

Short description Type of KG
gap p yp

Bottlenecks Type of

Action

Priority
Timeframe

action

Agriculture
industrial
Multiple

Promote regenerative and
conservation agriculture as
ameans to systematically | Innovation
organize soil erosion control
measures

Nature-based solutions
(NbS) which are evi-
dence-led, locally appropri-
ate, targeted at soil erosion
hotspots and their off-site
effects

Innovation

Identification, characteri-
zation and assessment of | Research
NbS projects

Co-con-
struction of
soil erosion
prevention

1 techniques
and field

strategies

with practi-
tioners

To ensure sustainable soil Participatory monitoring
use, there is a pressing and assessment of NbS

need to assess and devel- i

op current and innovative Knovyle(jge and rege?nirpaat(l;\i fand uee

. . ) Application | X | X X X

soil erosion prevention Gap )

techniques and field strat- Collaborative approaches
egies with practitioners to collect accurate, spatially
and those who can act distributed data on soil

erosion

Innovation

High

Innovation

Dedicated demonstration
sites for conservative and | Innovation
regenerative measures

Financial support for
practitioners to implement
conservative and regenera-
tive practices

Innovation

Testing new measurement
approaches (integration
of remote sensing-based
innovation and technology
that allows for upscaled
estimates)

Research

302 SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Helena Guimardes et al.: Outlook on the knowledge gaps to reduce soil erosion (Suppl. materials)

Knowledge
gap

Co-develop-
ing tools that
can support
2 managers’
and landown-
ers’ decision
making

Represen-
tation of
ecosystem
services' loss-
es following
soil erosion

Soil erosion
risk maps

Interactions
between
natural and
anthropogenic
soil erosion
processes,
and societal
impacts

Short description Type of KG

Understanding man-
agers’ and landowners’
motivations during land
management is critical,

. Knowledge
and collaborative ap- . 'g
Application
proaches and governance
R Gap
mechanisms need to
be developed jointly for
informed and effective
decision-making
It is imperative to quanti-
tatively, as well as qualita-
tively, represent the losses | Knowledge
of ecosystem services Develop-
following soil erosion and | ment Gap

concurrently occurring soil
degradation processes

The need of soil erosion
risk maps encompass-
ing various types of soil
erosion, including potential
mitigation and restoration
measures, is indispensable | Knowledge
for anticipating when and | Application
where soil erosion might Gap
occur at unsustainable
rates, therefore providing
valuable evidence-based
information for policy- and
decision-making

Deeper comprehension of
natural and anthropogenic
soil erosion processes,
and societal impacts,
especially focusing on
their intricate interactions,
as it is this complexity
that determines the real
dimensions of the problem

Knowledge
Develop-
ment Gap

SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539

Agriculture

X

X

X

X

X

X

X

X

Sector

industrial

Multiple

Bottlenecks

Lack of soil literacy
among land man-
agers and policy

makers hinders the

recognition and
assessment of soil
health related to
local contexts and
soil types

Variability in meth-
odologies, which
complicates mean-
ingful compari-
sons and hinders
effective policy
applications

Action

Understanding land man-
agers and landowners’
motivations during land

management

Joint development of col-
laborative approaches and
governance mechanisms

Testing already existing
co-developed tools with a
broader range of end users

Build skills and knowledge
in recognizing and assess-
ing soil health

Create/reinforce funding
specifically directed to
assess linkages between
environmental losses (ES)
resulting from soil erosion
and economic costs

Develop a functional con-
tractualization system and
fair mechanisms for attrac-

tive rewarding incentives
to reduce speculative and

unsustainable land use

Integrating sediment con-
nectivity modelling in soil
erosion risk maps, support-
ed by empirical data

Explore Artificial Intelli-
gence and machine learn-
ing models to enhance the
accuracy and adaptability

of soil erosion risk maps

Build erosion prediction
scenarios that provide in-
formation on the magnitude
of consequences, including
off-site effects and subse-
quent risk management

Development of a sound
delimitation methodology
and effective norms regard-
ing authorized land use and
monitoring

Research on interactions
operating across diverse
spatial and temporal scales,
with an emphasis on pre-
dicting rates and assessing
onsite and off-site impacts

Interdisciplinary research
linking soil erosion process-
es with societal impacts

Type of

action

Research

Innovation

Innovation

Innovation

Research

Innovation

Research

Research

Research

Research

Research

Research

Priority

High

High

Mod-
erate

Mod-
erate

Timeframe

303



Helena Guimaraes et al.: Outlook on the knowledge gaps to reduce soil erosion (Suppl. materials)

Knowledge
gap

Establishing
a Soil Erosion
Monitoring
Network at
6 the EU level,
including
long-term
experimental
sites

Raise aware-
ness about
7 soil erosion
and its im-
pacts

Setting
8 benchmarks
for soil health

Scientific
evidence of
potential ben-
efits and con-
text-specific
trade-offs of
Nature.based
solutions

Soil erosion
rates inclusive

10 of erosion
processes at
various scales

304

Short description

Establishing a Soil Erosion
Monitoring Network at the
EU level, incorporating
local-scale monitoring
and knowledge exchange
systems involving local
environmental knowledge
and citizen science activ-
ities is essential. Special
attention is required in
the unique pedo-climatic
zones of Europe, neces-
sitating urgent establish-
ment of long-term exper-
imental sites to enhance
our understanding of the
dimension of soil erosion
processes

Need to increase aware-
ness of soil erosion and
the potential threats it
poses, namely by devel-
oping a comprehensive
guide on the importance
of soil, the risks asso-
ciated with soil erosion,
impacts on life on Earth
and ecosystem services

Setting benchmarks for
soil health, where soil
health objectives and

indicators are established
to be actionable across
various policy domains
and sectors, including
the development of
benchmarking tools to be
used by farmers, which
are practical, accurate
and sensitive to regional
differences and variation
across time periods

Potential solutions to build
resilience and prevent
soil erosion, including

Nature-based solutions
(NbS), are being promoted
and implemented in many
areas but the research ev-
idence to underpin under-
standing of the potential
benefits and to identify
context-specific trade-
offs has not kept pace

The evaluation of soil ero-

sion rates should broaden

its scope to encompass a

spectrum of erosion pro-

cesses at various scales
— from local to global

Type of KG

Knowledge
Develop-
ment Gap

Knowledge
Application
Gap

Knowledge
Develop-
ment Gap

Knowledge
Develop-
ment Gap

Knowledge
Develop-
ment Gap

Agriculture

X

X

X

X

X

X

X

X

X

X

Urban and

industrial

Bottlenecks

Multiple

Lack of awareness
of the importance/
urgency of pre-
venting soil erosion
hinders the adop-
tion of an informed
and proactive
approach to soil
management

Soil erosion rates
can vary depending
on the measure-
ment technique
and spatial scale,
leading to chal-
lenges in calibrat-
ing models across
different landscape
contexts

Action

Development of long-term
experimental sites

Create a soil health cer-
tificate

Development of practical,
regionally-sensitive bench-
marking tools

Research on qualitative
understanding of the trade-
offs and benefits of NbS

Gather evidence on the
effectiveness of soil bio-
engineering techniques in
more contexts, and robust
cost-benefit analyses

Developing multi-scale
approaches that combine
field-scale erosion data
with high-resolution tech-
niques

Research on the connectiv-
ity of erosion factors across
spatial and temporal scales

Research on the interac-
tions of socio-economic
and cultural drivers leading
to tipping points for erosion
processes

Type of

Priority
Timeframe

action

. Mod-
Innovation
erate
. Mod-
Innovation
erate
Research Mod-
erate
Research
Mod-
erate
Research
Research
Mod-
erate
Research
Research
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Bottlenecks
Action Type of

Knowledge

Short description Type of KG
gap p yp

Priority
Timeframe

action

Agriculture
industrial
Multiple

To comprehensively
quantify soil erosion, the

A nent nent must extend | Knowledge
i of sediment beyond merely on-site Develop- | X | X X Low
redistribution effects and include the ment Gap
wider repercussions of
sediment redistribution
The scale effect in un-
Scale effect derstanding phenomena
and related related to soil erosion, and | Knowledge
12 | implications | its implications for multiple | Develop- | X | X X Low
of soil erosion ecological processes, ment Gap
phenomena must be addressed in the
future
Connectiv- The dynamics of factors
ity of slope such as slope gradient
gradient and aspect, rainfall and
and aspect, wind intensity, soil type,
rainfall and management practices,
wind intensity, | and natural events have | Knowledge
13 soil type, been individually asso- Develop- | X | X X Low
management ciated with triggering ment Gap
practices, and soil erosion. However,
natural events | the connectivity of these
across spatial | factors across spatial and
and temporal temporal scales remains
scales poorly comprehended
Understanding of the
Interactions | interactions of socio-eco-
of socio-eco- | nomic and cultural drivers, | Knowledge
14 nomic and including policy drivers, Develop- | X | X X Low
cultural leading to tipping points ment Gap
drivers for erosion processes is
also lacking
Tools to Developing Fools that
. " seamlessly integrate
integrate soil X .
- the aforementioned soil
erosion risk . .
mans with erosion risk maps and Knowledge
15 P . potential Develop- | X | X X Low
economic and . .
. mitigation, or restoration | ment Gap
ecological . . .
X solutions combined with
effectiveness X .
economic and ecological
analyses X
effectiveness analyses
The effects and trade-
Effects and offs of land management
trade-offs of | practices, water manage-
| ~ ) A
and manage ment (|'nclud|ng |rr|g§t|on Knowledge
ment prac- | and drainage), and climate
16 . . . Develop- X | X X Low
tices, water change (including green-
e ment Gap
management house gas emissions,
and climate increased freezing and
change thawing events) remain
inadequately understood
Comparison . . .
. . Comparing soil erosion
of soil erosion R
rates among different
rates among N
. types of fires (pastoral, | Knowledge
different . e
17 N prescribed, wildfires) or Develop- X X Low
types of fires . .
. along soil burn severity ment Gap
or along soil . . . .
N gradients is an increasing-
burn severity v urgent need
gradients Yy urg
Calibration and validation
of existing models are
required, emphasizing the
Calibration compilation and analysis
N Knowledge
and validation of data at a meta level.
18 - - - Develop- | X | X X Low
of existing Data mining on existing
A . X ment Gap
models soil erosion and sediment

yield data is necessary to
enhance the accuracy of
modelling tools
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Bottlenecks
Action Type of

Knowledge

Short description Type of KG
gap p yp

action

Priority
Timeframe

Agriculture

Urban and
industrial
Multiple

Identification | It is imperative to identify

. Knowledge
19 of trade-offs tlrade offs between pOPI Develop- | X | X X X Low
between cies and to test strategies
- . ment Gap
policies to mitigate them
Transferring knowledge
Effective on soil erosion techniques
transference | after fires requires careful | Knowledge
20 | of soil erosion | consideration as its effec- | Application | X | X X Low
techniques tiveness and widespread Gap
after fires dissemination have been
limited
Planning . -
L Planning monitoring sys-
monitoring tems in a cost-effective Knowledge
21 | systemsina Application | X | X X X Low

. manner to ensure their
cost-effective ; Gap
endurance in the future

manner
The interaction between
researchers and prac-
titioners should be ap-
Allocate proached with a sense of
resources to responsibility. Allocating | Knowledge
22 | experts and resources to experts and | Application | X | X X X Low
expertise on expertise on integration Gap

integration becomes crucial to secure
conditions for collective
actions that benefit all
parties involved.

Negative effects arising
from trade-offs between
policy instruments are Lack of harmoni- Reform policy to drive
apparent, particularly in | Knowledge zation between farmers to take care of soil
specific land uses such | Application | X | X policies due to the | health and in parallel create | Innovation | Low
as agriculture, forestry, Gap complexity of the training to secure farmers’
and agroforestry systems, subject know how
leading to increased soil
erosion

Measures
to mitigate
negative
trade-offs be-
tween policy
instruments

This system needs signifi-
cant changes in traditional
policies, including a focus
on achieving results relat-
ed to ecosystem services,
Test Re- payment for ecosystem
sults-based services (specifically for
models within | preventing soil erosion),
CAP and the establishment
of a supporting system
for knowledge exchange
among producers, public
administrators, and
researchers.

Knowledge Negative percep- Soil Health Results-based
Application | X tion of environmen- models transversal to Research | Low
Gap tal policies land use

306 SOLO Outlook 2025
DOI: 10.5281/zenodo.17430539



Outlook on the knowledge gaps to improve soil structure (Suppl. materials)

Jenni Hultman et al.

wIaIpIN 21elopo
wia)-1ioys ubIH
wia)-1ioys ubIH
wisl-Hoys ubIH

E .

uopoe
yoleasay
siabeuew pue|
pue sadIAlas
Alosiape
‘yosessal buowe
uopoe uonoeIa|
yoleasay J0 3087
uopoe paziuowJey
uoleAouu| 10U SpoYIsN
‘uonoe 's101e201pUl
yoleasay uowIwo o 3oe
uopoe
uopeAouu|
‘uonoe
yoleasay

uonoe
jJoadAL s)oauanog

uonsanb uj eale
pue| Jo 8sn-pug|
ay3 ul pazpoud
EERIINES
wa)sAsoos
Bujuieisns Joy
2Injonuis |10s
Jewndo ue
$8)N}[ISUOD JeUM

lelisnpul
Jueqin

deb
1uawdojansp
abpajmouy

deb uoneojdde

abpaimouy ‘deb

1awdojansp
abpajimouy

deb abpajmouy

jJoadAy

£9IN30N1)S |10S 0} paje|al
sa10ads Ay 10919p am ue) !AsIsAIpoIqg
pue ejolq |ios Bunoedwi Ag ainyonis
110S 103448 SUO[}PUOD |BIUBWUOIIAUS 10
Juswabeuew ul sabueyd moH ¢adoing
SS0JOE 92UBUSIUIUBW PUE UOIIEW.IO)
2IN}oN1)s |10S 10} BUNBJOIDEW |I0S JO
soueplodwi 8y st 1eym ¢ABojolq [10s uo
abpajmouy yidap-ur yum Bujuonouny
|e1n}onuys |1os aAoldwi 10 ujejulew o}
salIqIssod 8y} 8. JeYA (8JN1ONAAS [I0S
yoedwi spuels dold Ued Juslxe 1eym
£SIUBWIUOIIAUS JUBISHIP Ul 8IN}ONNS [I0S
J0 s1apjing [eaibojolq pue santadoud
|esiwayd-09isAyd |10s Jo aoueliodw
aAlelal pue diysuole|as ayy sl }eym

(S|opow) syuswssasse
1oedw| pue soleusds ainny 8onpold
0} pue 'sa|eds pue sasodind snoliea 1o}
2IN}oNJ3S |10S 3y} 8INSEaW 9M UBD MOH
¢ (91e9s |ejuaunUOd 03 A13unod ‘uopad
'UOJDIW) S3EJS JUBAS|SI }B BIN}ONIIS
J10s pooB 1oy ainseaw 3saq ay3 S| Jeym

¢anoidwi 03 Buiuonouny [eIN}ons

|0 104 papasu s| aBueyd e jo Big MoH
£S92IAI9D WBYSAS093 JO uolsinoid sa|qeud

ey} UOIIPUOD JO 8IN3ONJIS [10S [eulBlio
0] 106.4€] |10S JO UOIIBIO}S®I PINOYS (MOU
2In3oNn1)s [10S |ewdo palapisuod S| jeym
uo 10edwi ue saey suondo yuswabeuew

‘pue ayew|d BuiBueys ay [jIM

uonduosap M

¢+ (Buipooyy ‘6°8) s109)40 BMS-}J0 By} aIe
1BUM PUB 8INJONIIS [10S }09}J0 (Sal1) 1S910))
S9oUBQINISIP Jay10 pue (uoneledald |j0s
‘uoljorIIX® Jaquil}) Juswabeuew 158104 MOH

;uorjelolalep Jaye

)1 210}s814 1o 92U
0} SUOI}ORIDIUI BSBY) SSauley saopoeld
Juswabeuew ued moy pue ‘ainjoniis sy
ulejulew pue pjing 0} 19BJIaUI [0S Ul S1010.})
|eaiwayd pue ‘|eaisAyd ‘|eaibojoiq op moH

¢suoneojdde pue sajeas ssoloe Buipow
9AOIPaId puUE 'SJUBWSSISSE DIWOU0DS
"Juswabeuew pue| ajqeuleisns yioddns 01
2InJonJis |10s anjeA pue Ajyuenb am ued moH

¢saonoeud

asn-pue| BulAjoAs pue sBueyd s1ew||d Jo aoey
3y} Ul—seale Juswy231ed 0} sieyeyoldiw
Wolj—Ssa|eds ssoloe uoisinold eyqey

pue uope|nBai 1a1em aAoaYye 1oddns 0}
ainjonis [10s ydepe pue abeuew am ued MOH

deb abpajmouy

annelend :adAy eyeq

BOAON BS8I9] ‘saelewing eusloH 'SO0JPUIT ISSNL-11IUY ‘UBUeUUSd eule] ‘SuulosS eud|aH ‘uew)nH luuar :sioyiny

sdeb abpajmouy ay) Jo MaIAIBAQO

L |lealew Auejuawajddng

.21nyonis j10s anoidwi 0} sdeb abpajmoud] ayj uo )00j3nQ, 10} sjersalew Aiejuawajddng

307

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539



Outlook on the knowledge gaps to improve soil structure (Suppl. materials)

Jenni Hultman et al.

uonoe
wisy-buo MO yoleasay
(1os aunsud
ou ‘aauanjjul
ojuabodolyiue
Big) adoing
ul sa|ijoid
|10S |[eanjeu
sl ey 10b.ey
uospedwod
uonoe /wie jeuyy syy jo
wis)-pIN MO yoleasay Ayiel annepy
uonoe
uopeAouu|
‘uonoe
wis)-6uo | s1esopON | yoleasay
Zainmny ay)
uopoe Ul BuluodouNy pue aINJoNU3s |10S 1084je
uoleAouu| JIIm uondwnsuod pue (9zis wJey 10}09s
‘uonoe uononpold ‘sdoid ‘uonngrisip |euoibal)
Wwii9)-110ys | 91eJapolN | yoleasay uoponpoud pooy ul sabueyd ajqissod moH
*AWoOU099 1e|Nd1Id Y} 8oUBYUD 0) Papaau
s1 Bulleys abpajmou pue uoljewloul
2IO|N "S|lI0S ul Bulpua pue pasn Ayenb pue
SMmo|} [ellolew ayy ebueyd Aew Ayienouio
SIyL ‘pasn aie Asy) Js1ye papiedsip ale
uonoe deb uoneojdde S|elJaew YoIym uj waisAs ojwouods
uolneaouu| abpajmouy ‘deb 1U8.1INd 8y} wWolj piemio} dais e si
‘uonoe Juswdojansp pue sjells1ew meJ passao0id Jo asn-al
Wi9)-110ys | @1eJopol | yoleasay abpajmouy 2y} sajowold Awouods0iq Jejnalid

uondiosap M

E o

deb abpajmouy
jJoadAL Jueqn
aweypwiy | Aoud E syoauaog 40 5dAL

(¢sessad01d Buiwioy [10S Uo paseq
UOI1BOI4ISSE|D [10S) ¢ludWabeuew aInoniis
]I0S 10} PapPaaU UOIIBWIOJUI BY} 8S00]
2IN)X3} [I0S UO Paseq UONBILISSE|D [I0S $80(Q

PATIE

Buoim ayy e pjaly ul noA ynd 3,uop s10e1U0D
8Uj} 18U} OS SISULIBJ B} IO} S}ORIIUOD

1an9g 186 0} moH :ainssaid uleyd Alddns

¢Buljeas woly 18A0231
S U0 109}J9 8y} pue

0S 9y} Ued ‘ainyonis

Bujjeas 10S ¢U0OBAWOD WO) JISA0ISI [I0S B}

ued pue 'payoedwod sey [10S 8y} Yonw MoH

£3INJONJ3S [I0S PaoNpul-luswabeuew ploAe
03 siebeuew pue| pue siaw.e) djay 0} MOH
(slabeuew-pue| ay) Buowe juswabeuew
J31eM UO (|10s ans Aj[e1oadsa) ain1oniis ||0s
10 8|04 B} U0 9BPBIMOUS| pUB BINIONIIS
]I0S SPJEMO} }$8183U] B} 8SBIOUI O} MOH

£IUSWIUOIIAUS
Buibueyd ayy 0} paisnipe 1o paujejujew aie
saop30eld 9S8y} JI 81NJONIIS |10S UO dARY }
[Im yoedw] Jeym pue ‘saonoeld yuswabeuew
Jua.Ind Buibua|jeyd JUSWUOIIAUS SSaUISNq
/leuonelado pue ayew|d Buibueyd e s| moH

JUSWUOIIAUS
Buibueys uj ainyoniys |10s Buiroldwi Jo
Buiuieuiew u sjerssjew yuswanoldwi

JIos pue AWouo23 JejnaJId Jo 1oedw|

deb abpajmouy

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539

308



Eric Struyf et al.: Outlook on the knowledge gaps the EU global footprint on soils (Suppl. materials)

SaWAYIS SYIAIF Ul pash xapul
Axenb 10s Jyr uo pjing 03 |eRURI0d “uoIUN
ueadoin3 ayj 0} SSIPOWWIOD [einyjndLISe
Ay Jo 1odxe 01 pajejas ypedwl |10S SARIRYD
10 SuliojIUOW PUNOIS-3Y3-Uo PI|OS E |[RISu]

MET UOLRI0ISAY BInjeN N3 ul padesiaua
s328.e) |10 UO Os|e p|ing ued siy ‘Sunutidiooy

sao110e4d JO AJjiqeuleisns pue uoidas ‘Aypowwiod
uo Sulpuadap syoedwl JUSIBYIP O3 BNP OS[e ‘BN3IYde
0] 1N2LJIP S2IIAIDS WISAS0ID |10S A UO JuBWIZY

Sunioyuow |10s Aiojedijqo pue
pazipJepuels uo aai8e 03 JNOLYIP ‘NI UIYIM USAF

1edwi Jay1o wouy 1edwi
2iqy pue pooy d[8uejuasip 0} paau

110S N3 BPISINO JOJ ‘W] SSISSE 0} MOY pue deg 9\ "syo-ape) "pul ‘ASojopoyraw
‘559SSE 0] SIIINIDS WBISAS0D3 |10S Ay Jo sjuLid1004 10s uoneusWaldWI | JUBWISSISSE Y)eay [l0S pazijeuoiSal
wLI9)-Hoys ysiH 3|qe|IeA. 3 PINOYS YIOMBWIE} ||EIIAO UY Uo 3|qe|leA. 1E S)3SEep PAzZIPJepue)s WUouN ON a8pajmouy pue paziuowJey e paau I\ €7
seade 1oedwi Asy auyaq
uoLepI|eA 1O} SUOLIEAIDSCO sayoeoidde |ei0303s peoiq
03 dew julidio0) |E21BI0BY] KUl ‘3|eds 98e| 10y [nyasn Ajzsow sayoeosdde Juain)
j0edw 105
|ed132109Y3 aAdIYde 0} ‘@Alisod pue aaneSau
410q ‘s921AJ95 Wa1sAS029 4O UoIsiAid § 10 Uo $92IAJIDS WD)SAS00 [10S B|dinw 01 19edWi pue|
Ananoe Ansaioj-oi8e pue Aisaio) ‘esnynouSe | yajew o) |00 asn-03-Apeal o "sa2IAIS WialsAs0da
40 s13Yd uMou| 03 payjul| dew |eqo|9 9|d|NW UM S}O-3pE.} 3|pUBY 0} MOH
uoi3as 1pedw Jad ‘Aypowwod *Jud1o0) 8yl 32npal 01 sUOLN|OS
Jad saoepns |10s payoedw [enuaod jo 9A1129)J9 1SOW 0} D|qEUS 0} [BIdNID
Asojuanui |e103 e Suipinoud Aq ‘peanpoud ‘suoniuyap uLidiooy sI's1y1 194 ‘N3 ay1 ojur Indul auqy
9q 03} SPAaU N3 AU} OJUI SALIPOWIWIOD dIqY a|dun|A “1edwi pue| PaleIdoSse pue suleyd anjea pue pooy 4O SYIYY 1IVdIAI AF) Y3
WI)-WnIpaAl ySiH pue pooy jo podwi jo dew |eqo|3 pajieraq A9y Bujuyap 031 spoyiaw pue sa24nos Jo A1aliep de8 a8paymouy | uo a8pamoud| pIjos aABY J0U OP I\ T

de3 aSpajmouy

‘aAnelend :2dAy exeq
[o6euiadoep SIUIBN ‘sauor
uAmiy ‘uosuiqoy pineq ‘uosme] Aleg ‘Ae4 ua|3 ‘yo1e@ SIPJe9 Y0901900Y SalI ‘0|zseT J919d ‘ledeAN eAlosIO ‘Agneq JusdulA ‘suassuer uea| JANNS 213 loyiny

malntano dewpeoy - g ajgel

L jedlew Auejuawajddng

.S|1os uo juridiooy jeqolb N3 ayl sdeb abpajmouy| ayj uo 300[3nQ,, 10} sjersajew Aiejuawajddng

309

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539



Eric Struyf et al.: OQutlook on the knowledge gaps the EU global footprint on soils (Suppl. materials)

'SuoISSIW N3 [10S
J3Y10 ulyum uonoe pasodoud Aue ur 1oedwi

W) WnIpaAl Y8iH 3 SPISINO J0 SUBUNOIIE JIUIP 10§ PABN

'suoIssIW N3 [10S
13410 uiyum uonoe pasodoud Aue ur 1oedwi
N3 3PISINO JO uLUNOIIE 103.IP 1O} PAAN

s|eo3 snoniquie wial-3uo| pue
(suonoe jundiooy Jay30 01 payul| Ajgeqoud)
5|e0S 213s1[E3U WIS)-1OYS BUYIP O} paaN

"|lo Wied 3|geUIRISNS UO 3|geIpunoy
pue sul
Aseunjon os|e Suipnpaul ‘AvgD pue ¥an3
Se yons suonoe 19edwi JaY1o woly a|qe|iene
wJ91-Hoys ysiH Apeauje 10edwi |10s uo a8pajmous| 9zISaYIuAS

V 1s2Jojutey Suipnpoul ‘ssyoeoidde

saouejequi Jamod 1axJew pue uodwnsuodaN0
01 payul| Apuaidyns Jou s1onpoud payull
uone)salosep 89 Joj puewap SulAUp Ul 3jod s,N3

s9113unod Supnpoud 03 Sulpjing
Anoeded pue 9aueuIaA0S JO UBPING 3Y1 PIYS 01 SIY

“Jedwi N3 apISIN0 10} SuUNOIIE JOU ‘Suoloe N3
UIYIM UO Pasnoy S3AIR[go UoIssiW |10s N3 JaY30

2doos peo.q 03} anp ‘saapen|ul [10s
ur paydynw aq M (Y4an3 “8-9) uonejuswalduwi Joy
suoLoe Jay1o ul pasuaiiadxa Apualind Auxajdwo)

'Sn20j 2Y1dads UMO Yim ||e qulidiooy |1os
Bupnpau Joj swsiueydaw Asejun|on, Jo Ajalien agie

‘swiaysAs
uonoNpo.d paxiw pue siapjoy|jews ajdujnw Wouy
pa2.Nos salpowwod oy Ajiejnoned ‘suonoe 1oedwl
21ydes80a8 jo Ajjigeadedy Jo Ayxajdwod smoys yan3

Jundiooy uogued uo Ajuo
pasnooy pue ainjjnoLiSe 01 payul| 10U AjJULIND NYED

deg a3psmouy

deg
uopejuswa|dwi
a8pajmouy|

Aaijod ‘suoisoap ‘suonoe
N3 J2Y310 pue [eag U319 N3 JO
10243 Jano-||ids duyap 03 paau I\

s|10s 10} saAneniul edwi N3
puoAsq pue Sunundiooy N3 J2Y10
40 |enualod ssasse 0} paau

uondisap Hoys

14

ded aSpajmouy

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539

310



Outlook on the knowledge gaps related to soil literacy (Suppl. materials)

Roger Roca Vallejo et al.

uoljeaouu|
.passnosip B uoneAouu|
8qol,
yoleasay
uoljeAouu|
yoleasay
Lpassnasip
oq oL, WUBIH,,
yoleasay
.passnasip
sq oL, WUBIH, | LUoieesdY,

uonoe

aweyawi] | Aynsoud JoadAL

*s|00} ABojouyosy
asn pue 'saljiAloe plaly axI|
sas|oloxa [eonoeld ajowoud
‘selsiaAlun pue sjooyds ybiy
UsaM1aq SUO[1eI0ge||0D 18)S04

'$890IN0S31
pue saopoeld 1saq aleys 0}
$10}22NP3 Y}IM 818I0qE.||0D

‘sjuswanoidul 1oy
soeqpaay Jayieb pue sjooyos uj
ss|npow Bujules| uo-spuey 10jid

*B|N2LIND SNOLIBA Ul Y}[eay [I0S JO

uonelBaUl [NySS800NS B1eSN||!
1ey} salpnis aseo dojanaq

‘sdeb
uonoe pue abpsjmouy| Buibpliq
10} sa1Ba1e1}S BADBYD AJlUspl
01 Alleqo|b sjppow diysplemals
I0S |NJSS99NS asAleuy

‘aled
pue Ayjigisuodsal Buouanjjul
SI0}OB} 8U} PUB)SISpUN O}
uonesnpa pue 'ABojoloos
‘ABojoyoAsd ul syiadxe abebul

~uondope
0} Slallieq pue suoljeAiow
Ajuspl 03 siswiie) yum

SMBIAIBIUI pUBe SABAINS 1ONPUOD),,

uonay

Aoeiay] [10s 0] pajejal sdeb abpajmouy ayjy uo yoonQ, 10} sjedjew Arejuawajddng

’SIuapnis 0} Jajsuel} sbpajmou Buniwi
‘AlleCi0]B UOIEINPS B2UBIOS [I0S BAIOSYS
Japuly uonealyisse|o |10s ul sayepdn pakejsp
pue $40001X8} PS}ePINQ "UOIIEONPS SoUSIOS
J1os ul Buipuelsiapun pue yuswabebus
SJapUIY Jewio) 81n}03| PaepIN0 Pasn-uaijo
8y "1s8I9)ul JO Oe| sashed suoneoldde
[BLIISNPUI PUE [B)USWUOIIAUS [eONoeld
pue aBpajmouy doUsIOs [0S [eyuawepuny
USaM}3Q UON}O8UUO0DSIP 8y “Ssanoyine
Aq 195 splepuejs [eUOEINPS }98W 0}
$92.IN0Sal 9|ge|leA. Se |[9Mm Se 'saousladxe
pue s}salajul ,SIayoes) [enpIAIpUl U0
spuadap U810 UOIIEINPS 82UBIIS [I0S JO
yidap ay ] "uswdojaAsp WnnNdLIND Japuly
sialIeq [eanijod pue uonejnbay ‘ssibsiens
|eoibofepad mau jo uoyeyuswa|dwi ayy
slapuly slayoeay Joj Bujuiely paywi,

JJuswanoidiwi Aoesay|
Jlos ul ssaiboud ayy Jo Buipueisiapun Jo 30|
e S9SNed AW} JOAO SIOIABYS( pue Sapniie
ul sebueyd Buunsesw ul AYNoIQ,

Japuly S}xa)u0 [B90] JO sanienbuls ay |

s)oauaog

leLsnpul

- 1salo4

.deg
uoneo|ddy wOn
abpajmouy,

deg
1uswdojanaqg o'v
abpajmouy)

.deg
juawdojenaqg q
abpajmouy,

deb

abpajmou
P3| | Sav

GZ0Z malniano sdeb abpajomu)y Aoeuayl j10S

L jedlew Auejuawajddng

uonesyisse|y

lenuauadxa

pue uo-spuey ‘1e-ay3-Jo
-81e1s 89 pue Bupjuiy} [eoRL

ajowo.d pjnoys saibsiens

9say] @ouepodwl s,[10S Jo
Buipueisiapun Jadasp e 12150}

0} salbajess |eoibobepad
9AI109)49 JO swdolensp sy
UO Papaau S| Yyd1easal aIo,,

aled
0] $81NQLIIU0D abBpajmou |10
usaym pue ‘aisym ‘moy aiojdxs
pinoys salpnis ‘(xopesed
diyspiemais |10s) SisIxe
deb ay3 Aym uo Buisnooy
Jo peajsu| ‘diysplemals
JI0s pue abpajmou|
92UBI0S [0S UsaMIaq
UoI309UU0 8y} Bulia)soy Ul
papaau S| Yoleasal 10N,

,’S92130e.d UoleAIaSUOD

los ydope 0} pue yyeay [10s
19pISU0D 0} SI0}OE JBU}0 pue
slaaulbua [1A1D ‘siauueld uegin
'siawley ‘'sa11sai0) Jusnaid Jo
/PUE 3|qeus ey} s103oe) Aoy
2y} Jo Buipuelsiapun ayowold
0} PapaaU S| YoIeasal a0,

uonduosap deb abpajmouy

31

Aoesay 10s
104 salbalens
|eoibobepad

diyspiemals
pue abpajmou
los Bupiuly
sAemuyied

uondope
sainseaw
UOI1BAISSUOD
jlos Burouanyyul
$10)0B4

L
deg abpajmouy]

aAnelend :2dAy eleq
1paels|ieg Inwjy pue dsul) efiey ‘ouezzawey ejjjwe ‘[e9sIA niog
‘uosuyor ualey ‘1607 ap ueA SO0y ‘'senblIpPoyY SIBIO BIUOS ‘lUIBSSNH alle 'eloN ydioeN uaiey ‘sexiey sexno’ ‘ex)suAzsomAziy euuy ‘ofs)ep eooy Jaboy :loyiny

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539



Outlook on the knowledge gaps related to soil literacy (Suppl. materials)

Roger Roca Vallejo et al.

.passnasip
g0y, WBIH, | ,uoneaouul,
Lpassnasip

g oL, WBIH, | uolessay,

uoneaouu|
LPassnasip
ybIH

2] O,

4 0L, uoleAouu|
uoleAouu|
uoneaouu|
uoleaouu|

.passnasip

sqoL, WUBIH,,
uoleaouu|
yoleasay

uonoe

aweyawi] | Auoud 4o odAL

s1deouod
Ayigeureisns oy |00y Buiyoes)
e se |los Buisn uo s10yeanpa
10} sdoys»iom 1onpuo),,

W SeAlenIul Yyesy
J10s Bunosyje sioyoey} Asy Ajuspl
0} SIX8}U0D UBCIN JUBIBHIP Ul
salpnis aAleledwod Jonpuoy,

*sydeouod
90U819s [10S dIseq Buiyoesy
| 92Ua)2dWod pue }oJWod
118y} s@dueyus jeyy Bujuiely
Uum siayoes) A1epuodss pue
Arewud apinoid 0} [e1oNID s1 Y

'SSOUBAI108)J I8y} 91eN|eAd pue
SpoyIaw mMau 1ojid 0} suonnNIsuL
[EUOIIEONPS UM 8}eI0qe|j0D

‘saopoeld Buiyoes) aalzeAouUl
Bupdope 1oy saanuaoul apirold
18y} swelboid yuswdojansp
|euoissajold dojanag

‘sabueyd
wn[n21INd 158} pue Juswa|dwl
0} $10}e2NP3 Y}IM 9)1eI00Ee(|0D

'swa|qo.d uonepeibap
j1los Buiajos Joy [enusiod ayy
1noge ajdoad BunoA Buowe
uopdaolad 81eindoe alow e
191504 0} JuswaAoIdwl [10S JO
so|dwexa |nyssa2ons aziseydw3y

*sBuipuly uoien|eAs uo
paseq sjuawaAoldwi WnjNoLIND
10} suolepuawwodas dojpasg

EERIETS
110S BUIyORS) Ul SSBUBAIDSYD
19U} SSSSSE 0} B|NOLIND [00YdS
JUS1IND JO SUOIEN|BAS }ONPUOD

’Sy08[gns |euonesnpa
Ul 82U8I9S [10S JO UOISN|OUl PUB WI0)81 S}
0 Aejap S8sNed SMaIAS] WN|NDLUND [euolieu
0 s9]0A2 BuoT "sseuaieme pue Bujuies)
SA1}09}4 SIapuly uoneanps Ayjigeuleisns
Ul 10s uo siseydwa Jualolnsuj

suoIssnasIp ul A)sIaAIp
pue yuswabebua Buonpas uonedionied
olpelods yum ‘Buiiepow Asoredionied
Japuly sojweuAp dnoib sjgeisun pue
1S3IB)UISIP JOp|oyaxessS “suondIpsun|
JualayIp ssoloe elep Buissaooe ul
AYnoii@ saipnis a1ealdwod Aew
suone|nbal pue saioljod [e20] Ul Ayjigeriep,,

‘spoylaw Buiyoeay
MaU JO s)jausq au} INoge ssausieme
0 yjoe saonoeld Bulyoesy paysijgeiss
abueyo 0} @oue)SISaI [EUOIINYIISU|

*S|aA8| Aokl
uj yuswanoldwi ay3 Bupjoesy u snbusjeyd
e sasoddns awiy JaAo syuswanolduwl
WiNIN2LLIND JO SSBUBAIID3YJS dY} Bulinseaw
ur Aynaiyiq "uonesedsid ssyoes) panoiduw
10} paau ay) Builoasiapun Ayjenb uoneosnpa
9y} Slapuly 82uslds [10s Uo Bululel} [ewloy
pajwWi| SJ8yoes] "ssIpog [euoeu-ans sy}
pue Jjeys ssosoe uopesiuefio Jo [aaa] ybly
e alinbal pue BuWNSUOD B} dIe S|9A3|
|EUOIIEONPS JUSISYIP SSOIOE SUOleNn|eAs
wn[no1IN2 aAisuayaldwoy “uopeonps
yy|eay [I0S SAISN|OUl pUB BA}0S44D
210W B SJ9pUIY BINDLIND Paysl|geiss
abueyd 0} $101eINPS WO} BOUB)SISDY

R EE

IV,

lemisnpul
Jueqin

.deg
uoned|ddy
abpajmouy,

.deg
Juswidojanaq Fol:H
abpsjmouy,,

.deo
yuswdojanreg Folk:H
abpsjmouy,

«deg
uoneo|ddy
abpajmouy,

deb
abpajmouy
JoadAL

Slapow 8ous}edwod
(as3) wawdojerag
a|geuleIsnS 1o} uoneanp3
03Ul JUBUOdWOD 8103 SE |10S
a1eiBaiul 1Y) SHIoMBWRL)
a1eplleA pue dojeAap o}
paJinbai s yoseasal Jayyind,

,’S8W021N0 18yjo
pue sjeob uoneanpa aygnd
puE U0N93||00 BIEP DJ1IUSIOS
O SWIa) Ul 'yyeay |10S ul
SOAI}BINUI 8OUBIOS USZNID JO
$5200Ns w}-Buol ay) 109))e
SUOIIPUOD [e20] MOY Buissasse
Ul papaau S| Yyd1easal aIo,

 uoneonpa
los 0} pJeBas yym spoyiaw
Buiyoes) Bunidsul pue mau

1dope 03 s10}0NJiSuUl B1eINWNS
18y} 1030y A¥ BY3 Aynuapl
0} papaau S| yoJeasal sI0N,,

Jluswabebus pue Ajsonnd
‘}saua)ul Juapnys abeinoous
0} 9|doad juablanipoinau
pue S|9A3]| [euoi}edNps
1USJBIP 0} palo|ie} s|ealew
|euoneonpa Buiessd ul
papasu S| YdoJeasal sIo,,

uonduosap deb abpajmou)y

sjopow
9ous1edwod
juswdojansp
a|geuleisns 1oy
uo11eONPS O
Jlos Buneibau|

ureay 1os ul
20UBIOS USZIHO
O SBWO2IN0
8y} uo
SIXOIU0D [BI0]
J0 @2UBN|U|

saonoeld
Buiyoeay jl0s
aAlleAOUUI 10}

SOAIUBOU|

spaau
Bujuies| ssoloe
uoneonpa
JI0S 8AISN[oU|

Il
deg abpajmouy

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539

312



‘s@ouslpne snoLeA 10}

313

Outlook on the knowledge gaps related to soil literacy (Suppl. materials)

Roger Roca Vallejo et al.

ybiH uoneaouu| | s1deouoo yiesy 10s Ajuep 1eyy w' SUOIINYISU SSOIJE S8SIN0D
passnosip $921n0sal [eUONEINPS dojaASQ - | ulep wdeo HIESY [10S JO S3LI0ANO
ELexe) . U0 SNSUaSU0D BUIABIYDE Ul AYNDI wsuidorenag puE ue1u0d ‘sayoeoidde N
9oL ABojouney pezipiepuels MSILIOE U AHNOLAT. aBpajmou,, Buiyoes) Buissasse ul
Mmo7 | uonenouu Jo uondope ayy ajowoud 0} PapaBU S1 4OIESSal BIO0NN,,
SI9p|oYsyeIS YIM 8)eloge||o)
,uoieosnps ’swelboid yyesy |10s
U] 92UBAS|3J [e}UBLUOIIAUS SY SIapuly |9A8]-A)ISI9AIUN O} S)UBPNIS
21n}noLIBe U SNJ0J [eUONIP.I)} S,80U810S Mau Bupoelyie uo yoedw JuswiiNIoDy
'SSUBANDSYS 0s Inq ‘'smolb Ayigeuleisns i 3saiiul des J19y3 pue sojdol yyeay J10s ul pue uopeonp3
passnasip BIH Joressay, 119U} SSOSSE 0} S)UBPNIS [00YdS Juapnis ‘Buipjing Ayoeded pue uoiednpa Juswidojersg o' w._gsa |e1ouab ayy se ||am se uj yoeanno
2q 0l Bunebiey swelbold yoeaino 0s Ul ssalboud siepuly swelboid aousios oBpaymouy SJUaPNIS |00YdS AIepuodas yjeaH |10S jo
JO suoien|eAs }oNpuo),, 10s Buiziyiold 01 8oUe)SISa. [BUONISU| " pue Aiewnd Buibebus e SSBUBAI0SYT
'sSaUaA08}e Wwelbold anoidwi pue ssasse pawie s}0}e Yoealino Jo ay) Bunenjeany
03 Ajllige ayy siepuly syoedwi yoeanno SSBUBAI0B)4D 8y} Bunenjeas
wis)-Buo ainsesw o3 Ayoeded paywi, Ul papasU S| YydIeasal IO,
uopedUNWWoY
‘uoleIUNWWOD pajabley Jaployaners
‘Buiuueld
uonoe pue Buipueisiapun deg anosdwi 03 sdnoub 101oe Aoy paiebiel
,Passnasip aSN pue| Ul S)UBWISSISSE BIIAIDS
ybIH uoleAouu| aAIsUaYa1dwod s1apuly suolbal Juaiapp Juswdojaneq o) 10} S|10S AQl palaAljop S92IAISS 10} S9IIAIBS
8q0J, JIos sjowoud 0} syuswuIanob
201 LM 212100El100 SS010E B}Ep SIIIAISS |I0S O} SS820e PajIWI] abpajmouy waysAs02a ayy Buipuelsiapun waysAsoo]
i Ul papasu S| Yo1easal sI0 paseg-|10S
Buipueisiepun
‘wniBjag jo A1a100g
92UBI0S [10S BY) JO B)ISgam
8y} uo Bojq auljuo Yoy ayy
uolyeaouu| 10 3|1j0.d [0S, 8Y} PA1EaId IM
'S91}8100S 82UBIOS [10S YUM pue
'Apawod dn-puels 0} Buneal
sanbiuyoal yup :ojdwex3
“SySnUBIoS ,’SUI9OU0D paje[al-|I0s Jo uonesniiold ayy
|IOS 1O} UOIEDIUNWILIOD 3UBIOS slapuly siayewAoljod Buowe uonepeibap
ul Bululel} pue 'se0Inosal I0S J0 ainjeu yusbin-uou ‘lenpesb syy pue
[euoneoNpa Jo Juawdo|aasp 9SO 9)eIPAWWI U0 SN0} “Uondsj0id ‘S10}0B SSIBAIP UONEJIUNWIWIOD
SNONUIUOD ‘suoijeloqe|jod pue Bujpuelsiapun |10s BuipieBai Anede 0} Emo__,tcm_w s|los ho,ﬂuwamm .E_m.mc Jlos
passnosip 5 uoneaouu| 10§ JuawNIdOal ‘@oUdlpne u__mmso_ pasned aney 8010310Mm [ednynolibe _,Qmmwi . [e100s ,c,:m._m_:w_:o ssnuond m>99.£
aq ol HPIH 196183 83 Yum Juswabebus , UIUSIUILIIP U} pue mocmchgm pooy voneayddy o4V 1By} sa1691e.1S UOREDIUNWWOD 0] syoadse
Buiobuo Buiziseydws ‘syuspnis $813UN0o padojansp Auew uj ‘seousipne abpajmouy, ieaY 108 BuInoIdwI Ul e100s pue
10} S1S3JUOD [0S SNOLIEA |essusb pue syedxe-uou Jo Juswebebus PoposU S1 40IESSSI IO leamino Buisn
paleNIUl SBY 80UBIS 108 JO 8y} SIapuly UONEOINPa 32UBIDS [I0S : " :
A131005 ysiueds ay | :ojdwex3 |eaiuyoe) AIanQ “sessaosold yuswabebua
19pIOYaXeIS SANDSYS SISpUlY SI0}0R
‘sainseaw 10 sadAy esieAlp Buiyoeal ul Aynoiia,
uonoalold pue uonepelbap
uoleAouu| 10S JO S)jauUsq pue $1s02 8y}
ayensn||l pjnoys salbsielis
uofesuNWWod wiay-Huo
‘oS 0} Paje|d] SIXIU0d
uoleAouu| |BID0S PUE [BINYND J03]4l Jey)

E .

s|elalew [euoiieonpa dojaneg

JoadAL

noi H

s)oausnog

deb
abpajmouy
JoadAL

[elysnpu ainy
Jueqin -Inouby

uonduosap deb abpajmou)y (e

a
Bpajmou)

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539



Outlook on the knowledge gaps related to soil literacy (Suppl. materials)

Roger Roca Vallejo et al.

passnasip
oqoy | WMPaN

passnasip Mo
2q 0]

passnasip Mo
aq oL

passnasip Mo
aq oL

passnasip
oqoy | UMPeN

passnasip Mo
aq oL

passnasip
aq 0L ybIH

aweyawi] | Auoud

yoleasay

yoJeasay

uoneaouy|

yoleasay

uoneaouy|

uoneaouu|

uoleaouu|

yoJeasay

yoJeasay

uoneaouu|

yoleasay

uoneaouu|

uoneaouu|

uonoe

JoadAL

‘wiay} yoeay} 0} moy
pue diysplemais |10S A1}
10} papasu salou1edwod
8y} UO U2IBasal }onpuog

*90UB|9s [0S Ul sweiboid
uoneonpa aouelsip Buissasse 1oy
sylomawely uolenieas dojpaag

*SSOUDAINOBYD JIBY}
a1enjeAs pue suondo uoneonps
2oue3sIp 10]id 0} suonNISUl
[BUOIIEONPS UM 8}eI0qe||0D

‘uonjualal abpajmou ayenjens
pue sBuijes [euoneonps
9SISAIP Ul S|ellaiew yyeay [1os
92.1nos-uado 821n0s-uadQ 10]id

‘sayoeoldde aaeAouUl
pue saoinosal Buiyoes)
dojenap-0o pue 1depe ‘aleys 0y
$10}22NpP3 104 swloje|d ayeal)

*ss@o0.d
MBSIASI WIN[NJLLIND 8Y) SUlWEa)S
0} sl1ayewAolod yum syeloqe|jo)

*B|NOLIIND O3UI 82UBIDS [10S
Jo uonelBaul Alpwi ayy ayowoud
01 salbajelys Aoeoonpe dojaaaq

"90UBI0S [I0S Ul WIoJd)
|BUONEINPS UO $3J0AD MaIABI
WN|NDLLIND [BUOIEU JO Joedwi

8y} asAjeue 0} SaIpN3s 1oNpPUOD

‘SWINJ0} 99B4-0}-8.) pUE
(Apms 1ydjaq) auljuo jo sueaw
Aq 'sjeuoissajoid pue ‘Ansnpul
'solWapede YHM Uoneynsuo

"90UBIOS |10S Ul SI9pjoysyers
9SJaAIP BuOWE UOHEIIUNWWOD
2A1}08)J9 10} saulapinb dojareg

'$10}08S SNOLIBA SS0I0B
s109(01d 8oU10s |10S Ul S92130eId
UoIeDIUNWWOD 9sAleuy

'S9OUB|PNE SNOLIEA IO}
$1d@2U09 Yyjeay [10s AjLie|o 1eyy
$90In0sal [eUOREONPS dojaAs(

*ABojoulwia) pazipiepuels
Jo uondope ayj ayowouid o0}
SI9p|oYaxeIS UM 8)eloge||o)

uonejuswaldul
weiboud Jopuly Aew swiopred Buiuies|
auljuo 0} pajeja. sabusjieyod [ealuydsy,,

J’Slelsiew
22.in0s-uado Jo aoueAsjal pue Ayjenb ayy
Bupnsus Ul A}nd1yIQ '$82IN0SBI [BUOINPEI)
-uou }dope 0} SUOIIN}ISUI WOJ) SOUB)SISY,,

,/UOI}EINPS UI 92UBIDS [10S JO doueriod
aU) JO Ssaualeme paywi] ‘ssnioud
|EUOIIEONPS 18Y3}0 UO Pasnooy siaxewoljod
WIOJ) BOUR)SISOY "S}I0443 WO WNNDLLIND
Aejap Aew sajpiny oneioneaing,

"W} JOAO SSausIeME
ul sebueyo Buunsesw ul Aynoua

’S10}09S $S010E $99130eld UONEeIIUNWWOD
uo eyep Buissadoe ul Aynoiida,

sdnoJB 8sIaAIp SSOIOR SUOHIULBP
Uo Snsuasuod BuiAsIyde Ul AYndiyId,

s)oausnog

lemisnpul

Jueqin

ainy
-[nouby

«deg
abpajmouy 0'g
uolenouuy,,

.deg
uoneo)ddy o)
abpajmouy,

«deg
juswdojanaqg o)
abpajmouy,

.deg
1uawdojanaqg o'g
abpajmouy,

deg
juawdojanaqg v
abpajmouy

.deg
Juswdolanaqg 0'g
abpajmouy,

.deg
1uawdojanaqg o)
abpajmouy,

deb
abpajmouy
JoadAL

sabua|leyo
plIoM-|eal SSaIppe ey}
uoI1eoNPS |10S Ul Sa1ous}adwod VN
pue sj|is Bullaysoy ul
papaau S| yoleasal aIop,,

~Buiuien paseq-piay
pue Aloyeloqe Joj Aenoipied
‘uoieonpa [10s 1oy Buluies)
92UB)SIP JO SSBUBANDD}D aU)
Buiroldwi pue Bunenjeas ul
papasu S| YdoJeasal sIop,,

SOLO Outlook 2025

DOI: 10.5281/zenodo.17430539

VN

~abBueyoxa abpajmous |I0s pue
uoleanpa |10s anoidwy ued
s|elsew 891nos-uado pue VN
Ayjenb-ybiy moy Buissasse
Ul PaPaau S| YydIeasal I0N,

‘suofjeAouul
pue swJojal uoneanps
yyeay |10s Aejap sajohd

MBSIASJ WN[NJLLIND [eUOleu

wJs)-6uo| moy Bujujwexs

U papaau S| Yd1easal aIoN

VN

‘spunoJbyoeq
|elnynd pue ‘sanjeA ‘spasu
Jlayy uo paseq yyesy |los
anjeA pue aAlg2Jad s10)0€
Jualayip moy Buipuelsiapun
U| papaau S| Ydo1easal aIoN

VN

Jlepow dn-wonoq ‘'sa
umop-do}, 8y} puohaq syosfoid
yjjeay |I0S Ul 81e2IUNWWOD
sassaulisnq pue ‘siayewAojjod
‘sysiuaios moy BuisAjeue ui
papasu S| yoieasal alop,

VN

sauldiosip ssoioe
Buipueisiopun uowwod e
9)eal1d 0} S8ADB(CO UOISSIN
[0S pue ,,yiesy |1os,
|| swusy Ay Buiuyep
papaau S| Yoleasal aI0,

VN

9l

uonduosap deb abpajmou)y e mmu.w T

314



	1. Introduction
	2. State-of-the-Art
	2.1. Current state of the knowledge on Land Degradation
	2.2 Prioritization of knowledge gaps

	3. Roadmap for the Land Degradation Think Tank
	3.1 Key Knowledge Gaps
	Knowledge Gap 1
	Addressing Trade-offs in Restoration: Insights from Grassland Studies
	Cost-Effectiveness in Large-Scale Restoration: A Participatory Approach
	Knowledge Gap 2
	Knowledge Gap 3
	Social Impacts of Land Degradation
	Economic Impacts of Land Degradation

	3.2 Prioritized Knowledge Gaps
	Knowledge Gap 4
	Knowledge Gap 5
	Knowledge Gap 6
	Knowledge Gap 7
	Utilizing the Voluntary Carbon Market to Enhance Liquidity in the Agri-Food Value Chain
	Knowledge Gap 8
	Knowledge Gap 9
	Knowledge Gap 10

	3.3 Overview

	Acknowledgements
	References
	Endnotes
	1. Introduction to the Think Tank conserve and increase soil organic carbon stocks
	2. State-of-the-Art
	2.1 Current status of knowledge on conserving and increasing soil organic carbon stocks
	2.2 Prioritizations of knowledge gaps

	3. Roadmap for the topic “Conserving and increasing soil organic carbon stocks”
	3.1 Key knowledge gaps
	Knowledge gap 1: Increase SOC stocks for climate change adaptation
	Knowledge gap 2: Biodiversity - interaction between soil carbon and soil biology
	Knowledge gap 3: Policy making and decision support

	3.2 Prioritized knowledge gaps
	Knowledge gap 4: Soil carbon monitoring, reporting and verification (MRV)
	Knowledge gap 5: SOC in circular bioeconomy, LCA
	Knowledge gap 6: SOC and Agronomic system approach
	Knowledge gap 7: Urbanisation and SOC
	Knowledge gap 8: Education and awareness raising on SOC
	Knowledge gap 9: Forest management and SOC
	Knowledge gap 10: EU footprints of soil carbon outside Europe
	Summarisation of prioritized knowledge gaps


	References
	Introduction
	List of abbreviations
	State-of-the-art
	Soil sealing
	Urban soil reuse

	Prioritisation of knowledge gaps

	Roadmap for “No net soil sealing and increase the reuse of urban soils” Think Tank
	Key knowledge gaps
	New policy approaches and instruments to reduce soil sealing
	Best practices to promote the reuse of urban soils from construction sites
	Effectiveness of desealing interventions
	Legal and regulatory dimension of soil sealing

	Prioritised knowledge gaps
	Socio-economic impacts of no net soil sealing policies
	Minimum unsealed soil per person to ensure biodiversity and human health in urban areas
	Drivers of soil sealing from individual decisions to sectoral policies
	Typologies of soil sealing and their impact on soil functions and services
	Acceptability and legitimacy of no net soil sealing policies
	Links between soil sealing and land take

	Overview

	References
	Endnotes
	Contributors and Reviewers
	Abreviations

	1. Introduction
	1.1. Scope (specific to PRTT)
	1.2. Engagement within the PRTT
	Identification of the stakeholders
	Stakeholder engagement process


	State of the Art
	2.1. Current state of the knowledge on soil pollution and restoration - System-approach and conceptual framework
	The three domains:
	The relevant principles for reaching soil pollution reduction targets (2030 and 2050) that should be integrated into all domains:

	2.2. Summary of the State of the Art on Soil Pollution and Restoration
	2.2.1. Sources and scope of soil pollution
	The source of pollution:
	Selection of key pollutants and their properties:
	2.2.2. Impacts of soil pollution on biodiversity and ecosystems
	2.2.3. Impacts of soil pollution on stakeholders
	2.2.4. Solutions to soil pollution
	Agriculture
	Non-agricultural soil pollution
	2.2.5. Social and economic tools to prevent soil pollution and their fitness- for-purpose

	2.3. Prioritization of knowledge gaps

	3. Roadmap for PRTT
	3.1. Key knowledge gaps
	3.1.1. Impact of soil pollutants (individual and mixtures, short-term and long- term) on soils and soil ecosystem services
	3.1.2. Socio-economic and market tools to prevent soil pollution and their fitness-for-purpose
	3.1.3. Impact of soil pollutants (individual and mixtures, short-term and long- term) on human Health

	3.2. Other prioritized Knowledge Gaps
	3.2.1. (Knowledge gap 4) - Data gaps on soil pollution and lack of systemized monitoring
	3.2.2. (Knowledge Gap 5) - Technical/practical tools to remediate soil pollution and restore soils
	3.2.3. (Knowledge Gap 6) - Behaviour/transportation and fate of soil pollutants and link of soil pollution with water and air
	3.2.4.(Knowledge gap 7) - Baseline, Indicators/descriptors and quality thresholds/criteria
	3.2.5. (Knowledge Gap 8) - Overall impact of soil pollution on wider ecosystem functioning (beyond soils)
	3.2.6. (Knowledge Gap 9) - Technical/practical tools to prevent agricultural soil pollution
	3.2.7. (Knowledge Gap 10) Knowledge gaps regarding the implementation and upscaling of preventative measures to to address agricultural soil pollution

	3.3. Overview of knowledge gaps
	Further Steps/Notes
	Annexes


	References
	Introduction
	Why do we need a Think Tank focused on the Prevention of Soil Erosion?

	State-of-the-Art
	Current state of the knowledge on Soil Erosion

	Knowledge Gaps
	Prioritization of knowledge gaps

	Roadmap
	Key knowledge gaps
	Prioritized knowledge gaps

	Overview
	Overview table

	Acknowledgements
	References
	1. Introduction
	2. State-of-the-Art
	2.1. Current state of the knowledge on Soil Structure
	2.2 Prioritization of knowledge gaps
	Methodology


	3. Roadmap for Soil Structure
	3.1 Key knowledge gaps
	3.2 Prioritized knowledge gaps
	3.3. Overview

	Acknowledgements
	References
	Introduction
	Background to the international dimension (as presented in the Soil Mission Implementation Plan)
	Importance

	State of the Art
	How to establish global ecological footprint of the EU-food and biomass system
	MRIO?
	Key papers on country-specific assessment
	Habitat loss and agricultural trade
	Analyses and Tools from the JRC
	Overarching conclusion
	KG1: Disentangling biomass import effects from other soil impacts
	KG2: There is no standard soil footprinting methodology
	KG3: Trade-offs between soil impacts
	KG4: Scale issues
	KG5: Impact of local and broader outside EU policy and soil governance
	KG6: Potential benefit of the use of new biotechnology, as well as agro-ecological approaches
	KG7: Link to other Soil Mission objectives


	Knowledge Gaps
	Engagement within the Think Tank
	Process for document preparation

	Roadmap: initial knowledge gaps translated into actionable priority knowledge gaps
	1. We need to define current hot-spots of soil footprint for maximum impact
	2. We need a harmonized and regionalized soil health assessment methodology, incl. trade-offs
	• EU Common Agricultural Policy (EU CAP)
	• EU CAP Network
	• Germany
	• United Kingdom
	• France
	• Hungary
	• LUCAS (Land Use/Cover Area frame statistical Survey)
	• Australia
	• United States
	• BIO-EAST
	• FAO

	4. We need to assess potential of other EU footprinting and beyond EU impact initiatives for soils
	• CBAM
	• EUDR
	• EMAS, CSDD and CSRD
	• EU Taxonomy regulation and the EU sustainable finance framework
	• Nature Restoration Law
	• Voluntary mechanisms
	• UNFCCC LULUCF carbon accounting

	5. We need to define spill-over effect of EU Green Deal and other EU actions, decisions, policy

	Prioritization
	Roadmap table
	Acknowledgements
	References
	Introduction
	Soil literacy in the context of the Soil Mission
	Scoping methodology for knowledge gaps on soil literacy

	2. State-of-the-Art
	2.1 Current state of the knowledge on soil literacy
	2.2 Recommendations for soil literacy

	3.1 Prioritization of knowledge gaps
	4. Roadmap for Soil Literacy Think Tank
	4.1 Key knowledge gaps
	2. More research is needed in understanding the ecosystem services delivered by soils for key actor groups to improve targeted communication.
	3. More research is needed in evaluating the effectiveness of outreach efforts aimed at engaging primary and secondary school students, as well as the general public, in soil health topics and their impact on attracting new students to university-level so

	4.2 Prioritized knowledge gaps
	4.3 Overview table
	Soil literacy knowledge gaps оverview table


	Acknowledgements
	References
	1. Introduction
	2. State-of-the-Art on Nature Conservation of Soil Biodiversity
	2.1 Current State of Knowledge on nature conservation of soil biodiversity

	3. Roadmap for nature conservation of soil biodiversity
	3.1 Key knowledge gaps
	3.1.1 Standardisation of soil biodiversity monitoring methods
	3.1.2 The valuation of soil biodiversity
	3.1.3 Conservation and restoration methods

	3.2 Prioritized knowledge gaps
	3.2.1 Harmonised conservation frameworks
	3.2.2 Need for public awareness of soil biodiversity
	3.2.3 Need for implementation of effective soil biodiversity conservation strategies
	3.2.4 Lack of minimum dataset to index soil biodiversity
	3.2.5 Lack in knowledge of specific threats to soil biodiversity
	3.2.6 Lack in knowledge of species taxonomic identity and ecology
	3.2.7 Lack in knowledge of spatial and temporal distribution of soil biodiversity

	3.3 Overview of knowledge gaps

	Conclusion
	Acknowledgements
	References
	Supplementary material 1

